1
|
Li XF, Qie XT, Mo BT, Wang CF, Xing ZH, Zhao JY, Wang CZ, Hao C, Ma L, Yan XZ. Functional types of long trichoid sensilla responding to sex pheromone components in Plutella xylostella. INSECT SCIENCE 2024; 31:1503-1518. [PMID: 38616579 DOI: 10.1111/1744-7917.13367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/17/2024] [Accepted: 03/11/2024] [Indexed: 04/16/2024]
Abstract
Sex pheromones, which consist of multiple components in specific ratios promote intraspecific sexual communications of insects. Plutella xylostella (L.) is a worldwide pest of cruciferous vegetables, the mating behavior of which is highly dependent on its olfactory system. Long trichoid sensilla on male antennae are the main olfactory sensilla that can sense sex pheromones. However, the underlying mechanisms remain unclear. In this study, 3 sex pheromone components from sex pheromone gland secretions of P. xylostella female adults were identified as Z11-16:Ald, Z11-16:Ac, and Z11-16:OH in a ratio of 9.4 : 100 : 17 using gas chromatography - mass spectrometry and gas chromatography with electroantennographic detection. Electrophysiological responses of 581 and 385 long trichoid sensilla of male adults and female adults, respectively, to the 3 components were measured by single sensillum recording. Hierarchical clustering analysis showed that the long trichoid sensilla were of 6 different types. In the male antennae, 52.32%, 5.51%, and 1.89% of the sensilla responded to Z11-16:Ald, Z11-16:Ac, and Z11-16:OH, which are named as A type, B type, and C type sensilla, respectively; 2.93% named as D type sensilla responded to both Z11-16:Ald and Z11-16:Ac, and 0.34% named as E type sensilla were sensitive to both Z11-16:Ald and Z11-16:OH. In the female antennae, only 7.53% of long trichoid sensilla responded to the sex pheromone components, A type sensilla were 3.64%, B type and C type sensilla were both 0.52%, D type sensilla were 1.30%, and 1.56% of the sensilla responded to all 3 components, which were named as F type sensilla. The responding long trichoid sensilla were located from the base to the terminal of the male antennae and from the base to the middle of the female antennae. The pheromone mixture (Z11-16:Ald : Z11-16:Ac : Z11-16:OH = 9.4 : 100 : 17) had a weakly repellent effect on female adults of P. xylostella. Our results lay the foundation for further studies on sex pheromone communications in P. xylostella.
Collapse
Affiliation(s)
- Xiao-Fei Li
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi Province, China
| | - Xing-Tao Qie
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi Province, China
| | - Bao-Tong Mo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Cai-Feng Wang
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi Province, China
| | - Zeng-Hua Xing
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi Province, China
| | - Jin-Yu Zhao
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi Province, China
| | - Chen-Zhu Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Chi Hao
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi Province, China
| | - Li Ma
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi Province, China
| | - Xi-Zhong Yan
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi Province, China
| |
Collapse
|
2
|
Souza JPA, Bandeira PT, Bergmann J, Zarbin PHG. Recent advances in the synthesis of insect pheromones: an overview from 2013 to 2022. Nat Prod Rep 2023; 40:866-889. [PMID: 36820746 DOI: 10.1039/d2np00068g] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Covering: 2013 to June 2022Pheromones are usually produced by insects in sub-microgram amounts, which prevents the elucidation of their structures by nuclear magnetic resonance (NMR). Instead, a synthetic reference material is needed to confirm the structure of the natural compounds. In addition, the provision of synthetic pheromones enables large-scale field trials for the development of environmentally friendly pest management tools. Because of these potential applications in pest control, insect pheromones are attractive targets for the development of synthetic procedures and the synthesis of these intraspecific chemical messengers has been at the core of numerous research efforts in the field of pheromone chemistry. The present review is a quick reference guide for the syntheses of insect pheromones published from 2013 to mid-2022, listing the synthesized compounds and highlighting current methodologies in organic synthesis, such as carbon-carbon coupling reactions, organo-transition metal chemistry including ring-closing olefin metathesis, asymmetric epoxidations and dihydroxylations, and enzymatic reactions.
Collapse
Affiliation(s)
- João P A Souza
- Laboratório de Semioquímicos, Departamento de Química, Universidade Federal do Paraná, UFPR, Caixa Postal 19020, Curitiba 81531-990, PR, Brazil.
| | - Pamela T Bandeira
- Laboratório de Semioquímicos, Departamento de Química, Universidade Federal do Paraná, UFPR, Caixa Postal 19020, Curitiba 81531-990, PR, Brazil. .,Departamento de Química, Universidade Federal de Santa Maria, Avda. Roraima, 1000, Santa Maria, RS, Brazil
| | - Jan Bergmann
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Avda. Universidad 330, Valparaíso, Chile.
| | - Paulo H G Zarbin
- Laboratório de Semioquímicos, Departamento de Química, Universidade Federal do Paraná, UFPR, Caixa Postal 19020, Curitiba 81531-990, PR, Brazil.
| |
Collapse
|
3
|
Chen J, Han J, Zhang J, Li L, Zhang Z, Yang Y, Jiang Y. Rhodium/Amine Dual Catalytic System for Reassembling C≡C Bonds of Conjugated Alkynes with Cyclopropenes via Cutting/Insertion Cascade. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Jie Chen
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jiabin Han
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jian Zhang
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Ling Li
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Zhengyu Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yanhui Yang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yaojia Jiang
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
4
|
Faal H, Silk PJ, Mayo PD, Teale SA. Courtship behavior and identification of a sex pheromone in Ibalia leucospoides (Hymenoptera: Ibaliidae), a larval parasitoid of Sirex noctilio (Hymenoptera: Siricidae). PeerJ 2021; 9:e12266. [PMID: 34760353 PMCID: PMC8572519 DOI: 10.7717/peerj.12266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 09/16/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Ibalia leucospoides (Hymenoptera: Ibaliidae) is a larval parasitoid that has been widely introduced as a biological control agent for the invasive woodwasp,Sirex noctilio (Hymenoptera: Siricidae) in the Southern Hemisphere. In this study, the courtship behavior and identificaion of sex pheromones are described for I. leucospoides under laboratory conditions. METHODS For courtship behavior, both sexes were observed in a wire mesh observation cylinder (75 cm length ×10 cm diameter) for 15 minutes. The female body washes were analyzed using Gas Chromatography- Electroantennographic Detection (GC-EAD). Then the EAD-active compounds were tentatively identified using GC-Mass Spectrometry (GC-MS) and examined in olfactometer assays. RESULTS The courtship behavior included rhythmic lateral movements, mounting, head-nodding cycles in males, and wing-fanning in females. GC-EAD analysis of female body washes with male antennae revealed seven compounds which elicited antennal responses, four of which are straight-chain alkanes (C23, C25, C26, and C27). The identities of these alkanes were confirmed by matching the retention times, mass spectra, and male antennal activity to those of commercially obtained chemicals. In olfactometer assays, a blend of the four straight-chain alkanes was attractive to I. leucospoides males, and there was no response to blends that lacked any of these four compounds. Female body wash was no more attractive than the four-component blend. The ratios of EAD-active components differ between hydrocarbon profiles from males and females. CONCLUSION This study is the first investigation of cuticular hydrocarbons in the family Ibaliidae. It provides evidence that the ubiquitous alkanes (C23, C25, C26, and C27) in sex-specific ratios attract I. leucospoides males.
Collapse
Affiliation(s)
- Hajar Faal
- Department of Environmental and Forest Biology, State University of New York-Environmental Science and Forestry, Syracuse, NY, USA
- Forest Pest Methods Laboratory (Otis Laboratory), USDA-APHIS-PPQ-CPHST, Buzzards Bay, MA, United States of America
| | - Peter J. Silk
- Natural Resources Canada, Atlantic Forestry Centre, Fredericton, New Brunswick, Canada
| | - Peter D. Mayo
- Natural Resources Canada, Atlantic Forestry Centre, Fredericton, New Brunswick, Canada
| | - Stephen A. Teale
- Department of Environmental and Forest Biology, State University of New York-Environmental Science and Forestry, Syracuse, NY, USA
| |
Collapse
|
5
|
Chen J, Guo P, Zhang J, Rong J, Sun W, Jiang Y, Loh T. Synthesis of Functionalized α‐Vinyl Aldehydes from Enaminones. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jie Chen
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Pan Guo
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Jianguo Zhang
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Jiaxin Rong
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Wangbin Sun
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Yaojia Jiang
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Teck‐Peng Loh
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University Singapore 637616 Singapore
| |
Collapse
|
6
|
Chen J, Guo P, Zhang J, Rong J, Sun W, Jiang Y, Loh T. Synthesis of Functionalized α‐Vinyl Aldehydes from Enaminones. Angew Chem Int Ed Engl 2019; 58:12674-12679. [DOI: 10.1002/anie.201906213] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Jie Chen
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Pan Guo
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Jianguo Zhang
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Jiaxin Rong
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Wangbin Sun
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Yaojia Jiang
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Teck‐Peng Loh
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University Singapore 637616 Singapore
| |
Collapse
|
7
|
Yao Q, Xu S, Dong Y, Lu K, Chen B. Identification and characterisation of two general odourant-binding proteins from the litchi fruit borer, Conopomorpha sinensis Bradley. PEST MANAGEMENT SCIENCE 2016; 72:877-887. [PMID: 26085035 DOI: 10.1002/ps.4062] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 05/08/2015] [Accepted: 06/12/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND The litchi fruit borer, Conopomorpha sinensis Bradley, is one of the most destructive pests of litchi and longan fruits in south-east Asia and southern China, yet the molecular biology and physiology of this pest remain poorly understood. Control of this insect pest may be achieved by interfering with its recognition of host plants. RESULTS In this study, two cDNAs encoding CsGOBP1 and CsGOBP2 were identified from the antennae of C. sinensis, and a comparative study on these two C. sinensis GOBPs (CsGOBPs) was conducted. The secondary structure of these two CsGOBPs mainly consists of six α-helices, but three-dimensional structural predictions of CsGOBP1 and CsGOBP2 indicated significant difference in the final 3D models. Results in real-time PCR assays indicated that the two CsGOBPs had different tissue- and sex-dependent expression patterns. A competitive binding assay revealed that CsGOBP1 considerably prefer the component exhibited in Guiwei or Feizixiao litchi cultivar, while CsGOBP2 bind to general volatile components from nine litchi cultivars. Additionally, ethyl acetate has higher binding affinities to CsGOBP2 protein than to CsGOBP1, and has remarkable attraction to female C. sinensis moths in Y-tube olfactometer assays. CONCLUSION These results strongly suggest functional difference between these two CsGOBPs in perception of host plant odourants.
Collapse
Affiliation(s)
- Qiong Yao
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Shu Xu
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Yizhi Dong
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Kai Lu
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Bingxu Chen
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| |
Collapse
|
8
|
Ma T, Xiao Q, Yu YG, Wang C, Zhu CQ, Sun ZH, Chen XY, Wen XJ. Analysis of Tea Geometrid (Ectropis grisescens) Pheromone Gland Extracts Using GC-EAD and GC×GC/TOFMS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:3161-3166. [PMID: 27040982 DOI: 10.1021/acs.jafc.6b00339] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The tea geometrid, Ectropis grisescens Warren, is one of the most severe defoliator insect pests in tea plantations, China. The use of insecticides, etc., is forbidden on organic tea plantations. No female-produced sex pheromones of E. grisescens had been previously identified. In the present study, female gland extracts were analyzed by gas chromatography coupled with electroantennographic detection (GC-EAD) and two-dimensional gas chromatography (GC×GC) using a time-of-flight mass spectrometric detector (TOFMS). Two components, (Z,Z,Z)-3,6,9-octadecatriene (Z3Z6Z9-18:Hy) and (Z,Z)-3,9-6,7-epoxyoctadecadiene (Z3Z9-6,7-epo-18:Hy), were identified from pheromone gland extracts, and their electrophysiological and behavioral activity evaluated. Under laboratory conditions, Z3Z9-6,7-epo-18:Hy elicited a stronger electrophysiological response than Z3Z6Z9-18:Hy. In the field, traps baited with Z3Z9-6,7-epo-18:Hy alone showed better results than traps baited with Z3Z6Z9-18:Hy, and the binary mixture of Z3Z9-6,7-epo-18:Hy and Z3Z6Z9-18:Hy in a ratio of 4:1 (approximate ratio of females emitting pheromone) caught more males than the single components or any other blends. This study showed that Z3Z6Z9-18:Hy and Z3Z9-6,7-epo-18:Hy are the sex pheromone components of E. grisescens and that they prove useful in developing alternative management tools for the pest.
Collapse
Affiliation(s)
- Tao Ma
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University , Guangzhou 510642, China
| | - Qiang Xiao
- Key Laboratory of Tea Plants Biology and Resources Utilization of Agriculture Ministry, Tea Research Institute, Chinese Academy of Agricultural Sciences , Hangzhou 310008, China
| | - Yu-Geng Yu
- Key Laboratory of Tea Plants Biology and Resources Utilization of Agriculture Ministry, Tea Research Institute, Chinese Academy of Agricultural Sciences , Hangzhou 310008, China
| | - Cai Wang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University , Guangzhou 510642, China
| | - Cheng-Qi Zhu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University , Guangzhou 510642, China
| | - Zhao-Hui Sun
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University , Guangzhou 510642, China
| | - Xiao-Yang Chen
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University , Guangzhou 510642, China
| | - Xiu-Jun Wen
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University , Guangzhou 510642, China
| |
Collapse
|
9
|
Holdcraft R, Rodriguez-Saona C, Stelinski LL. Pheromone Autodetection: Evidence and Implications. INSECTS 2016; 7:insects7020017. [PMID: 27120623 PMCID: PMC4931429 DOI: 10.3390/insects7020017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/04/2016] [Accepted: 04/13/2016] [Indexed: 01/22/2023]
Abstract
Olfactory communication research with insects utilizing sex pheromones has focused on the effects of pheromones on signal receivers. Early pheromone detection studies using the silkworm moth, Bombyx mori L., and Saturniids led to the assumption that emitters, especially females, are unable to detect their own pheromone. Pheromone anosmia, i.e., the inability of females to detect their conspecific sex pheromone, was often assumed, and initially little attention was paid to female behaviors that may result from autodetection, i.e., the ability of females to detect their sex pheromone. Detection of conspecific pheromone plumes from nearby females may provide information to improve chances of mating success and progeny survival. Since the first documented example in 1972, numerous occurrences of autodetection have been observed and verified in field and laboratory studies. We summarize here a significant portion of research relating to autodetection. Electrophysiological and behavioral investigations, as well as expression patterns of proteins involved in pheromone autodetection are included. We discuss problems inherent in defining a boundary between sex and aggregation pheromones considering the occurrence of autodetection, and summarize hypothesized selection pressures favoring autodetection. Importance of including autodetection studies in future work is emphasized by complications arising from a lack of knowledge combined with expanding the use of pheromones in agriculture.
Collapse
Affiliation(s)
- Robert Holdcraft
- Marucci Center for Blueberry and Cranberry Research and Extension, Rutgers University, 125A Lake Oswego Road, Chatsworth, NJ 08019, USA.
| | - Cesar Rodriguez-Saona
- Marucci Center for Blueberry and Cranberry Research and Extension, Rutgers University, 125A Lake Oswego Road, Chatsworth, NJ 08019, USA.
| | - Lukasz L Stelinski
- Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA.
| |
Collapse
|
10
|
Holliday AE, Mattingly TM, Toro AA, Donald LJ, Holliday NJ. Age- and sex-related variation in defensive secretions of adult Chlaenius cordicollis and evidence for their role in sexual communication. CHEMOECOLOGY 2016. [DOI: 10.1007/s00049-016-0210-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Yang Y, Zhang L, Guo F, Long Y, Wang Y, Wan X. Reidentification of Sex Pheromones of Tea Geometrid Ectropis obliqua Prout (Lepidoptera: Geometridae). JOURNAL OF ECONOMIC ENTOMOLOGY 2016; 109:167-175. [PMID: 26491188 DOI: 10.1093/jee/tov282] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 09/02/2015] [Indexed: 06/05/2023]
Abstract
Tea geometrid Ectropis obliqua Prout (Lepidoptera: Geometridae) is an important defoliator of the tree crop Camellia sinensis L. in China. The sex pheromones of E. obliqua have not been identified, but have potential importance relative to the biological control of this predator. In this study, the female sex pheromones of E. obliqua were identified and evaluated for use in the monitoring and mass trapping of this pest. The sex pheromone extracts were subjected to gas chromatography-electroantennographic detection and gas chromatography-mass spectrometry. The identified chemicals were synthesized and applied to wind-tunnel tests and field experiments. (Z,Z,Z)-3,6,9-octadecatriene and 6,7-epoxy-(Z,Z)-3,9-octadecadiene were determined to be the primary sex pheromones produced by the female E. obliqua; the latter elicits the strongest electroantennogram responses from male E. obliqua antennae. However, males did not respond to single components in the wind-tunnel tests. The results of a field-trapping experiment indicated that a 4:6 v/v blend of (Z,Z,Z)-3,6,9-octadecatriene and 6,7-epoxy-(Z,Z)-3,9-octadecadiene was highly effective in attracting male moths.
Collapse
Affiliation(s)
- Yunqiu Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China (; ; )
| | - Longwa Zhang
- Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei 230036, China
| | - Feng Guo
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China (; ; ), School of Life Science, Anhui Agricultural University, Hefei 230036, China , and
| | - Yanhua Long
- School of Life Science, Anhui Agricultural University, Hefei 230036, China , and
| | - Yun Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China (; ; )
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China (; ; ),
| |
Collapse
|
12
|
Goto T, Urabe D, Isobe Y, Arita M, Inoue M. Total synthesis of four stereoisomers of (5Z,8Z,10E,14Z)-12-hydroxy-17,18-epoxy-5,8,10,14-eicosatetraenoic acid and their anti-inflammatory activities. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.08.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|