1
|
Renyard A, Gooding C, Chalissery JM, Petrov J, Gries G. Effects of macro- and micro-nutrients on momentary and season-long feeding responses by select species of ants. Sci Rep 2024; 14:5727. [PMID: 38459134 PMCID: PMC10923885 DOI: 10.1038/s41598-024-56133-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/01/2024] [Indexed: 03/10/2024] Open
Abstract
Few studies have investigated the relative contribution of specific nutrients to momentary and season-long foraging responses by ants. Using western carpenter ants, Camponotus modoc, and European fire ants, Myrmica rubra, as model species, we: (1) tested preferential consumption of various macro- and micro-nutrients; (2) compared consumption of preferred macro-nutrients; (3) investigated seasonal shifts (late May to mid-September) in nutrient preferences; and (4) tested whether nutrient preferences of C. modoc and M. rubra pertain to black garden ants, Lasius niger, and thatching ants, Formica aserva. In laboratory and field experiments, we measured nutrient consumption by weighing Eppendorf tubes containing aqueous nutrient solutions before and after feeding by ants. Laboratory colonies of C. modoc favored nitrogenous urea and essential amino acids (EAAs), whereas M. rubra colonies favored sucrose. Field colonies of C. modoc and M. rubra preferentially consumed EAAs and sucrose, respectively, with no sustained shift in preferred macro-nutrient over the course of the foraging season. The presence of a less preferred macro-nutrient in a nutrient blend did not diminish the blend's 'appeal' to foraging ants. Sucrose and EAAs singly and in combination were equally consumed by L. niger, whereas F. aserva preferred EAAs. Baits containing both sucrose and EAAs were consistently consumed by the ants studied in this project and should be considered for pest ant control.
Collapse
Affiliation(s)
- Asim Renyard
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| | - Claire Gooding
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Jaime M Chalissery
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Jonathan Petrov
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Gerhard Gries
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| |
Collapse
|
2
|
Renyard A, Gries R, Cooper SL, Gooding CE, Breen JC, Alamsetti SK, Munoz A, Gries G. Floral and Bird Excreta Semiochemicals Attract Western Carpenter Ants. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.923871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ant colonies have vast and diverse nutritional needs but forager ants have limited mobility to meet these needs. Forager ants would accrue significant energy savings if they were able to sense and orient toward odor plumes of both carbohydrate and protein food sources. Moreover, if worker ants, like other flightless insects, had reduced olfactory acuity, they would not recognize the specific odor signatures of diverse carbohydrate and protein sources, but they may be able to orient toward those odorants that are shared between (macronutrient) food sources. Using the Western carpenter ant, Camponotus modoc, as a model species, we tested the hypotheses that (1) food sources rich in carbohydrates (aphid honeydew, floral nectar) and rich in proteins (bird excreta, house mouse carrion, cow liver infested or not with fly maggots) all prompt long-distance, anemotactic attraction of worker ants, and (2) attraction of ants to plant inflorescences (fireweed, Chamaenerion angustifolium; thimbleberry, Rubus parviflorus; and hardhack, Spiraea douglasii) is mediated by shared floral odorants. In moving-air Y-tube olfactometer bioassays, ants were attracted to two of four carbohydrate sources (thimbleberry and fireweed), and one of four protein sources (bird excreta). Headspace volatiles of these three attractive sources were analyzed by gas chromatography-mass spectrometry, and synthetic odor blends of thimbleberry (7 components), fireweed (23 components), and bird excreta (38 components) were prepared. In Y-tube olfactometer bioassays, synthetic blends of thimbleberry and fireweed but not of bird excreta attracted ants, indicating that only the two floral blends contained all essential attractants. A blend of components shared between thimbleberry and fireweed was not attractive to ants. Our data support the conclusion that C. modoc worker ants can sense and orient toward both carbohydrate and protein food sources. As ants were selective in their responses to carbohydrate and protein resources, it seems that they can discern between specific food odor profiles and that they have good, rather than poor, olfactory acuity.
Collapse
|
3
|
Martins Junior ER, da Costa ACG, Milet-Pinheiro P, Navarro D, Thomas WW, Giulietti AM, Machado IC. Mixed pollination system and floral signals of Paepalanthus (Eriocaulaceae): insects and geitonogamy ensure high reproductive success. ANNALS OF BOTANY 2022; 129:473-484. [PMID: 35039823 PMCID: PMC8944716 DOI: 10.1093/aob/mcac008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND AIMS Eriocaulaceae exhibit a great variety of floral traits associated with insect (e.g. nectariferous structures) and wind pollination (unisexual flowers, exposed sexual organs and small pollen grains), as well as the 'selfing syndrome' (small flowers, short distance between stigma and anthers, and temporal overlap of male and female phases). Paepalanthus bifidus, P. subtilis and P. tortilis are related species that differ in form, size and colour of floral structures. We aimed to investigate the pollination and reproductive biology of these three species. METHODS We analysed the floral biology, floral visitors, pollinator behaviour, and the contribution of insects, wind and spontaneous geitonogamy to fruit set. We also evaluated the floral colour and scent of the species. Colour reflectance of capitula of each species was measured and plotted in models of insect vision. Floral scent samples were extracted and the compounds were compared to vegetative scent samples. KEY RESULTS In all species, the staminate and pistillate flowers are arranged in alternating cycles with a temporal overlap between these phases. Ants were the most frequent floral visitors and were effective pollinators in P. bifidus and P. tortilis, while flies were occasional pollinators in P. tortilis. Floral visitors were not observed in P. subtilis. In all species, fruits were produced by spontaneous geitonogamy, with no evidence of wind pollination. According to the models of insect vision, the colours of the capitula of P. bifidus and P. subtilis are the most inconspicuous for ants and flies. We found no difference between the emission of volatiles of inflorescences and vegetative structures. CONCLUSIONS This study suggests that ant pollination might be more widespread in Eriocaulaceae than currently assumed. Furthermore, for small monocarpic plants, mixed mating strategies are most favourable, by ensuring reproduction either by outcrossing when pollinators are abundant or by spontaneous geitonogamy when pollinations are scarce/absent.
Collapse
Affiliation(s)
- Edivaldo Rodrigues Martins Junior
- Programa de Pós-Graduação em Biologia Vegetal, Departamento de Botânica, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Ana Carolina Galindo da Costa
- Programa de Pós-Graduação em Biologia Vegetal, Departamento de Botânica, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
- Instituto Tecnológico Vale, Belém, Pará, Brazil
| | | | - Daniela Navarro
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | | - Ana Maria Giulietti
- Universidade Estadual de Feira de Santana, Programa de Pós-Graduação em Botânica, Feria de Santana, Bahia, Brazil
| | | |
Collapse
|
4
|
Du Y, Chen J. The Odorant Binding Protein, SiOBP5, Mediates Alarm Pheromone Olfactory Recognition in the Red Imported Fire Ant, Solenopsis invicta. Biomolecules 2021; 11:1595. [PMID: 34827593 PMCID: PMC8615367 DOI: 10.3390/biom11111595] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 02/01/2023] Open
Abstract
Olfaction is crucial in mediating various behaviors of social insects such as red imported fire ants, Solenopsis invicta Buren. Olfactory receptor (OR) complexes consist of odor-specific ORs and OR co-receptors (Orco). Orcos are highly conserved across insect taxa and are widely co-expressed with ORs. Odorant binding proteins (OBPs) can transport semiochemicals to ORs as protein carriers and thus constitute the first molecular recognition step in insect olfaction. In this study, three OBP genes highly expressed in S. invicta antenna, OBP1, OBP5, OBP6, and Orco were partially silenced using RNA interference (RNAi). RNAi SiOBP5- and Orco-injected ants showed significantly lower EAG (electroantennography) responses to fire ant alarm pheromones and the alkaloid, 2,4,6-trimethylpyridine than water- or GFP-injected ants 72 h post injection. Subsequent qRT-PCR analysis demonstrated that the transcript level of the OBP1, OBP5, OBP6, and Orco significantly decreased 72 h after ants were injected with dsRNAs; however, there were no transcript level or EAG changes in ants fed dsRNAs. Our results suggest that S. invicta Orco and SiOBP5 are crucial to fire ants for their responses to alarm pheromones. RNAi knocking down SiOBP5 can significantly disrupt alarm pheromone communication, suggesting that disrupting SiOBP5 and Orcos could be potentially useful in the management of red imported fire ants.
Collapse
Affiliation(s)
- Yuzhe Du
- Southern Insect Management Research Unit, Agricultural Research Service, United States Department of Agriculture, 141 Experiment Station Road, Stoneville, MS 38776, USA
| | - Jian Chen
- Biological Control of Pests Research Unit, Agricultural Research Service, United States Department of Agriculture, 59 Lee Road, Stoneville, MS 38776, USA;
| |
Collapse
|
5
|
Nelson AS, Carvajal Acosta N, Mooney KA. Plant chemical mediation of ant behavior. CURRENT OPINION IN INSECT SCIENCE 2019; 32:98-103. [PMID: 31113639 DOI: 10.1016/j.cois.2018.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/23/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
Ants are ecologically dominant members of terrestrial communities. Ant foraging is often strongly associated with plants and depends upon associative learning of chemicals in the environment. As a result, plant chemicals can affect ant behaviors and, in so doing, have strong multi-trophic indirect effects. Plant chemicals mediate ant behaviors in the contexts of floral visitation, seed dispersal and predation, leaf cutting, interactions with ant-mutualist host plants, interactions with mutualist and prey insects in plant canopies, and plant predation of ants by carnivorous plants. Here, we review what is known about these differing contexts in which plant chemicals influence ant behavior, the mechanisms by which ants are affected by plant chemicals, and future directions within these topics.
Collapse
Affiliation(s)
- Annika S Nelson
- Department of Ecology and Evolutionary Biology, University of California at Irvine, 321 Steinhaus Hall, Irvine, CA 92697, United States; Rocky Mountain Biological Laboratory, PO Box 319, Crested Butte, CO 81224, United States
| | - Nalleli Carvajal Acosta
- Department of Ecology and Evolutionary Biology, University of California at Irvine, 321 Steinhaus Hall, Irvine, CA 92697, United States
| | - Kailen A Mooney
- Department of Ecology and Evolutionary Biology, University of California at Irvine, 321 Steinhaus Hall, Irvine, CA 92697, United States; Rocky Mountain Biological Laboratory, PO Box 319, Crested Butte, CO 81224, United States.
| |
Collapse
|
6
|
Lin Y, Chen F, Lin S, Huang P, Akutse KS, Yu D, Gao Y. Imidacloprid Pesticide Regulates Gynaikothrips uzeli (Thysanoptera: Phlaeothripidae) Host Choice Behavior and Immunity Against Lecanicillium lecanii (Hypocreales: Clavicipitaceae). JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:2069-2075. [PMID: 29992326 DOI: 10.1093/jee/toy209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Indexed: 06/08/2023]
Abstract
We attempted to develop an efficient management strategy against gall thrips (Gynaikothrips uzeli Zimmermann (Thysanoptera: Phlaeothripidae)) via the combined application of a systemic insecticide (imidacloprid) and an entomopathogenic fungus (Lecanicillium lecanii Zimmerman (Hypocreales: Clavicipitaceae)). The attraction of G. uzeli to Ficus microcarpa volatiles after imidacloprid treatment was weaker than for untreated plants, which could be due to modulation of volatile metabolite profiles by imidacloprid. The toxicity of L. lecanii against nymph and adult thrips was much higher for those that fed on plants treated with a 50% lethal concentration (LC50) of imidacloprid than for the controls. Phenoloxidase (PO) activity was significantly inhibited in treated G. uzeli, while hemocyte abundances were not different in treated and healthy individuals. Thus, imidacloprid impacted the PO-related humoral immunity of G. uzeli, but not their cellular immunity. Overall, F. microcarpa treated with imidacloprid at LC50 concentrations exhibited volatile profiles that decreased the attraction of G. uzeli and also indirectly increased the pathogenicity of L. lecanni by inhibiting the humoral immunity of gall thrips. The results reported here suggest that combined application of imidacloprid and L. lecanii could be used as a new integrated control strategy against gall thrips.
Collapse
Affiliation(s)
- Yongwen Lin
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, P.R. China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, P.R. China
| | - Feng Chen
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, P.R. China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou, Fujian, P.R. China
| | - Sheng Lin
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, P.R. China
| | - Peng Huang
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, P.R. China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou, Fujian, P.R. China
| | | | - Deyi Yu
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, P.R. China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou, Fujian, P.R. China
| | - Yulin Gao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| |
Collapse
|
7
|
Response of a Predatory ant to Volatiles Emitted by Aphid- and Caterpillar-Infested Cucumber and Potato Plants. J Chem Ecol 2017; 43:1007-1022. [DOI: 10.1007/s10886-017-0887-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/10/2017] [Accepted: 09/12/2017] [Indexed: 10/18/2022]
|