1
|
Curkovic T, Arraztio D, Huerta A, Rebolledo R, Cheuquel A, Contreras A, Millar JG. Generic Pheromones Identified from Northern Hemisphere Cerambycidae (Coleoptera) Are Attractive to Native Longhorn Beetles from Central-Southern Chile. INSECTS 2022; 13:1067. [PMID: 36421970 PMCID: PMC9695304 DOI: 10.3390/insects13111067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
We conducted field bioassays with several known cerambycid pheromones in two zones of central-southern Chile: (1) Las Trancas (Ñuble region) and Coñaripe (Los Rios region) (Study 1) and (2) Rucamanque and Maquehue (La Araucania region) (Study 2). Up to eight compounds were tested individually, including 3-hydroxy-2-hexanone, (2R*,3S*)- and (2R*,3R*)-2,3-hexanediol, fuscumol, fuscumol acetate, monochamol, 2-methylbutanol, and geranylacetone. Compounds were loaded in plastic sachets placed in either multiple funnel or cross-vane panel traps hung in trees in a randomized block design (n = 3 or 4). The number of treatments and bioassay periods varied depending on the study. A total of 578 specimens belonging to 11 native species were collected, with the three captured in the highest numbers being Eryphus laetus (292 specimens), Calydon submetallicum (n = 234), and Chenoderus testaceus (n = 20). The three species are of economic importance: E. laetus is considered a minor pest in apple orchards, and the other two species infest Nothophagus hosts, including some timber species. Traps baited with 3-hydroxy-2-hexanone collected significant numbers of both sexes of the two most abundant species, and this compound was the only treatment that attracted C. submetallicum. (2R*,3R*)- and (2R*,3S*)-2,3-Hexanediols were also significantly attractive to E. laetus. Our results suggested that 3-hydroxy-2-hexanone and 2,3-hexanediols, which are known pheromone components of cerambycid species worldwide, are also likely to be conserved aggregation pheromone components among some species in western South America.
Collapse
Affiliation(s)
- Tomislav Curkovic
- Facultad de Cs. Agronómicas, Universidad de Chile, Santiago P.O. Box 1004, Chile
| | - Diego Arraztio
- Facultad de Cs. Agronómicas, Universidad de Chile, Santiago P.O. Box 1004, Chile
| | - Amanda Huerta
- Facultad de Cs. Forestales y de la Conservación de la Naturaleza, Universidad de Chile, Santiago P.O. Box 9206, Chile
| | - Ramón Rebolledo
- Facultad de Cs. Agrícolas y Recursos Naturales, Universidad de La Frontera, Temuco P.O. Box 54-D, Chile
| | - Arly Cheuquel
- Facultad de Cs. Agronómicas, Universidad de Chile, Santiago P.O. Box 1004, Chile
| | - Américo Contreras
- Facultad de Cs. Agronómicas, Universidad de Chile, Santiago P.O. Box 1004, Chile
| | - Jocelyn G. Millar
- Department of Entomology, University of California, Riverside, CA 92506, USA
| |
Collapse
|
2
|
Methionol, a Sulfur-Containing Pheromone Component from the North American Cerambycid Beetle Knulliana cincta cincta. J Chem Ecol 2022; 48:347-358. [PMID: 35366125 DOI: 10.1007/s10886-022-01351-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/01/2022] [Accepted: 02/06/2022] [Indexed: 10/18/2022]
Abstract
We describe the identification and field testing of 3-methylthiopropan-1-ol (methionol) as a male-produced aggregation-sex pheromone for the cerambycid beetle Knulliana cincta cincta (Drury) (subfamily Cerambycinae, tribe Bothriospilini). The corresponding sulfoxide, 3-methylsulfinylpropan-1-ol, was also produced sex-specifically by males, but its function remains unclear because the measured release rates of this compound from five different types of release devices were very low to undetectable. Unexpectedly, adults of the cerambycine Elaphidion mucronatum (Say) (Elaphidiini), primarily females, also were attracted by methionol, despite males of this species producing an aggregation-sex pheromone of entirely different structure, (2E,6Z,9Z)-2,6,9-pentadecatrienal.
Collapse
|
3
|
Silva WD, Hanks LM, Mongold-Diers JA, Grommes AC, Bento JMS, Millar JG. 2-Nonanone is a Critical Pheromone Component for Cerambycid Beetle Species Native to North and South America. ENVIRONMENTAL ENTOMOLOGY 2021; 50:599-604. [PMID: 33724303 DOI: 10.1093/ee/nvab022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Indexed: 06/12/2023]
Abstract
An increasing body of evidence indicates that cerambycid beetles native to different continents may share pheromone components, suggesting that these compounds arose as pheromone components early in the evolution of the family. Here, we describe the identification and field testing of the pheromone blends of two species in the subfamily Cerambycinae that share 2-nonanone as an important component of their male-produced aggregation-sex pheromones, the South American Stizocera consobrina Gounelle (tribe Elaphidiini) and the North American Heterachthes quadrimaculatus Haldeman (tribe Neoibidionini). Along with 2-nonanone, males of S. consobrina also produce 1-(1H-pyrrol-2-yl)-1,2-propanedione, whereas males of H. quadrimaculatus produce 10-methyldodecanol. Field bioassays conducted in Brazil (targeting S. consobrina) and Illinois (targeting H. quadrimaculatus) demonstrated that adults of both species were attracted only by the blends of both their pheromone components, and not to the individual components. The use of the pyrrole as a critical component for the former species is further evidence that this compound is a common pheromone structure among cerambycines in different biogeographical regions of the world.
Collapse
Affiliation(s)
- Weliton D Silva
- Department of Entomology and Acarology, University of São Paulo, Piracicaba, SP 13418900, Brazil
| | - Lawrence M Hanks
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | | | - Anna C Grommes
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - José Maurício S Bento
- Department of Entomology and Acarology, University of São Paulo, Piracicaba, SP 13418900, Brazil
| | - Jocelyn G Millar
- Departments of Entomology and Chemistry, University of California, Riverside, CA 92521
| |
Collapse
|
4
|
Rassati D, Marchioro M, Flaherty L, Poloni R, Edwards S, Faccoli M, Sweeney J. Response of native and exotic longhorn beetles to common pheromone components provides partial support for the pheromone-free space hypothesis. INSECT SCIENCE 2021; 28:793-810. [PMID: 32293107 DOI: 10.1111/1744-7917.12790] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 04/07/2020] [Accepted: 04/11/2020] [Indexed: 06/11/2023]
Abstract
Longhorn beetles are among the most important groups of invasive forest insects worldwide. In parallel, they represent one of the most well-studied insect groups in terms of chemical ecology. Longhorn beetle aggregation-sex pheromones are commonly used as trap lures for specific and generic surveillance programs at points of entry and may play a key role in determining the success or failure of exotic species establishment. An exotic species might be more likely to establish in a novel habitat if it relies on a pheromone channel that is different to that of native species active at the same time of year and day, allowing for unhindered mate location (i.e., pheromone-free space hypothesis). In this study, we first tested the attractiveness of single pheromone components (i.e., racemic 3-hydroxyhexan-2-one, racemic 3-hydroxyoctan-2-one, and syn-2,3-hexanediol), and their binary and tertiary combinations, to native and exotic longhorn beetle species in Canada and Italy. Second, we exploited trap catches to determine their seasonal flight activity. Third, we used pheromone-baited "timer traps" to determine longhorn beetle daily flight activity. The response to single pheromones and their combinations was mostly species specific but the combination of more than one pheromone component allowed catch of multiple species simultaneously in Italy. The response of the exotic species to pheromone components, coupled with results on seasonal and daily flight activity, provided partial support for the pheromone-free space hypothesis. This study aids in the understanding of longhorn beetle chemical ecology and confirms that pheromones can play a key role in longhorn beetle invasions.
Collapse
Affiliation(s)
- Davide Rassati
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Padova, Italy
| | - Matteo Marchioro
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Padova, Italy
| | - Leah Flaherty
- Department of Biological Sciences, MacEwan University, Edmonton, Alberta, Canada
| | | | - Sara Edwards
- Forest Protection Limited, Fredericton International Airport, Lincoln, New Brunswick, Canada
| | - Massimo Faccoli
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Padova, Italy
| | - Jon Sweeney
- Natural Resources Canada, Canadian Forest Service-Atlantic Forestry Centre, Fredericton, New Brunswick, Canada
| |
Collapse
|
5
|
Lyons-Yerion CD, Barbour JD, Mongold-Diers JA, Williams CJ, Cook SP. Identification of a Male-Produced Volatile Pheromone for Phymatodes dimidiatus (Coleoptera: Cerambycidae) and Seasonal Flight Phenology of Four Phymatodes Species Endemic to the North American Intermountain West. ENVIRONMENTAL ENTOMOLOGY 2020; 49:1077-1087. [PMID: 32885824 DOI: 10.1093/ee/nvaa092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Indexed: 06/11/2023]
Abstract
Research over the last 15 yr has shown widespread pheromone parsimony within the coleopteran family Cerambycidae, with a number of highly conserved pheromone motifs, often shared within and across subfamilies, tribes, and genera. Our goals were to increase our understanding of the evolution of volatile pheromones within the Cerambycidae, their role in reproductive isolation and to identify pheromones for use in the development of lures for monitoring cerambycids. Over 3 yr, we tested 12 compounds known to be cerambycid pheromones as possible attractants at sites across Idaho. This study focused on species within the cerambycine genus Phymatodes (Tribe: Callidiini). We also collected and analyzed headspace volatiles of captured Phymatodes dimidiatus (Kirby). Our results demonstrate that (R)-2-methylbutan-1-ol is a male-produced volatile pheromone for P. dimidiatus. These results are consistent with prior research suggesting that (R)-2-methylbutan-1-ol and (R)-3-hydroxyhexan-2-one, individually or in a blend of both compounds, commonly serve as pheromones for Phymatodes spp. We captured Phymatodes starting in mid-May, continuing through mid-August. Our data indicate that flight periods of Phymatodes spp. in Idaho overlap. These species may be utilizing various mechanisms to ensure reproductive isolation, such as the production of different volatile pheromones, minor components, and/or proportions of components, utilizing different host species and/or host volatiles, differing daily activity periods, and/or occupying different heights in the tree canopy. Our results contribute to the basic understanding of the chemical and behavioral ecology of the Cerambycidae and can be applied to the development of pheromone lures for monitoring of economically important or endangered species.
Collapse
Affiliation(s)
- Claudia D Lyons-Yerion
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID
| | - James D Barbour
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Southwest Idaho Research & Extension Center, Parma, ID
| | | | | | - Stephen P Cook
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID
| |
Collapse
|
6
|
Rice ME, Zou Y, Millar JG, Hanks LM. Complex Blends of Synthetic Pheromones are Effective Multi-Species Attractants for Longhorned Beetles (Coleoptera: Cerambycidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:2269-2275. [PMID: 32696963 DOI: 10.1093/jee/toaa157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Indexed: 06/11/2023]
Abstract
The wood-boring larvae of longhorned beetles (Coleoptera: Cerambycidae) can be important pests of woody plants, particularly as invasive species introduced by international commerce. Previous research has revealed that cerambycid species native to different parts of the world often share the same aggregation-sex pheromones and that pheromones of different species can be combined to create multi-species attractants that would be advantageous for surveillance monitoring for a number of species simultaneously. To explore the extent to which these chemicals can be combined into single lures, we developed four different blends of six to eight compounds and tested their effects as attractants for a community of longhorned beetle species in Iowa. The blends included known pheromones of species native to the study site, as well as pheromones identified from cerambycid species native to other parts of the world. The experiment confirmed that several cerambycid species were attracted by specific blends, in accordance with their known pheromone chemistry, and despite the presence of pheromone components of heterospecifics. This finding lends further support to developing multi-component blends that can effectively monitor for new incursions of multiple exotic species concurrently.
Collapse
Affiliation(s)
- Marlin E Rice
- Department of Entomology, Iowa State University, Ames, IA
| | - Yunfan Zou
- Department of Entomology and Chemistry, University of California, Riverside, CA
| | - Jocelyn G Millar
- Department of Entomology and Chemistry, University of California, Riverside, CA
| | - Lawrence M Hanks
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL
| |
Collapse
|
7
|
Hanks LM, Mongold-Diers JA, Mitchell RF, Zou Y, Wong JCH, Meier LR, Johnson TD, Millar JG. The Role of Minor Pheromone Components in Segregating 14 Species of Longhorned Beetles (Coleoptera: Cerambycidae) of the Subfamily Cerambycinae. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:2236-2252. [PMID: 31136653 DOI: 10.1093/jee/toz141] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Indexed: 06/09/2023]
Abstract
We present research on the chemical ecology of 14 species of longhorned beetles (Coleoptera: Cerambycidae), in four tribes of the subfamily Cerambycinae, conducted in east-central Illinois over 8 yr. Adult males produce aggregation-sex pheromones that attract both sexes. Twenty independent field bioassays explored the pheromone chemistry of the species and tested the possible attractive or antagonistic effects of compounds that are not produced by a given species, but are pheromone components of other species. Analyses of beetle-produced volatiles revealed compounds that had not been reported previously from several of the species. The most common pheromone component was (R)-3-hydroxyhexan-2-one, but pheromones of some species included isomers of the related 2,3-hexanediols. Males of the congeners Phymatodes amoenus (Say) and Phymatodes testaceus (L.) produced pure (R)-2-methylbutan-1-ol. Enantiomers of 2-methylbutan-1-ol also proved to be powerful synergists for Megacyllene caryae (Gahan), Sarosesthes fulminans (F.), and Xylotrechus colonus (F.). The major components of pheromone blends were consistently present in collections of headspace volatiles from male beetles, and only the major components were inherently attractive to a subset of species when tested as single components. Minor components of some species acted as powerful synergists, but in other cases appeared not to influence attraction. Among the minor components identified in headspace extracts from males, 2,3-hexanedione and 2-hydroxyhexan-3-one appeared to be analytical artifacts or biosynthetic by-products, and were neither attractants nor synergists. The antagonistic effects of minor compounds produced by heterospecific males suggest that these compounds serve to maintain prezygotic reproductive isolation among some species that share pheromone components.
Collapse
Affiliation(s)
- Lawrence M Hanks
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL
| | | | - Robert F Mitchell
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Yunfan Zou
- Departments of Entomology and Chemistry, University of California, Riverside, CA
| | - Joseph C H Wong
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Linnea R Meier
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Todd D Johnson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Jocelyn G Millar
- Departments of Entomology and Chemistry, University of California, Riverside, CA
| |
Collapse
|
8
|
The aggregation-sex pheromones of the cerambycid beetles Anaglyptus mysticus and Xylotrechus antilope ssp. antilope: new model species for insect conservation through pheromone-based monitoring. CHEMOECOLOGY 2019. [DOI: 10.1007/s00049-019-00281-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Isolation and identification of a male-produced aggregation-sex pheromone for the velvet longhorned beetle, Trichoferus campestris. Sci Rep 2019; 9:4459. [PMID: 30872772 PMCID: PMC6418187 DOI: 10.1038/s41598-019-41047-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/27/2019] [Indexed: 11/29/2022] Open
Abstract
The velvet longhorned beetle, Trichoferus campestris (Faldermann) (“VLB”; Coleoptera: Cerambycidae), is native to eastern Asia where it infests and damages a wide range of deciduous and coniferous tree species, including orchard and timber species. Immature stages of VLB are transported to new countries via international commerce, and populations have established outside the native range of the species. Here, we show that identification of pheromones of invasive pest species can be expedited by knowledge of the semiochemistry of related taxa. Histological sectioning revealed subcuticular, male-specific prothoracic glands connected to pits in the cuticle, which, in related species, are diagnostic for production of male-produced aggregation-sex pheromones, usually characterized by 2,3-alkanediol/hydroxyketone structural motifs. However, in preliminary field bioassays, beetles were not attracted by any known cerambycid pheromones. Subsequently, we identified a novel variant of the hydroxyketone motif (“trichoferone”) from headspace volatiles of males. In field bioassays, synthetic trichoferone was more attractive to both sexes of VLB than previously developed high-release-rate ethanol lures, and attraction was strongly female biased. This study demonstrated the utility of the prothoracic gland trait for predicting pheromone use in cerambycid species in the subfamily Cerambycinae, and that identification of pheromones of novel species can be expedited by knowledge of pheromones of related species. Trichoferone should prove to be a valuable tool for detection of VLB in regions where the beetle is or may become established.
Collapse
|
10
|
Millar JG, Mitchell RF, Meier LR, Johnson TD, Mongold-Diers JA, Hanks LM. (2E,6Z,9Z)-2,6,9-Pentadecatrienal as a Male-Produced Aggregation-Sex Pheromone of the Cerambycid Beetle Elaphidion mucronatum. J Chem Ecol 2017; 43:1056-1065. [PMID: 29151153 DOI: 10.1007/s10886-017-0905-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/30/2017] [Accepted: 11/06/2017] [Indexed: 11/25/2022]
Abstract
An increasing body of evidence suggests that the volatile pheromones of cerambycid beetles are much more diverse in structure than previously hypothesized. Here, we describe the identification, synthesis, and field testing of (2E,6Z,9Z)-2,6,9-pentadecatrienal as a male-produced aggregation-sex pheromone of the cerambycid Elaphidion mucronatum (Say) (subfamily Cerambycinae, tribe Elaphidiini). This novel structure is unlike any previously described cerambycid pheromone, and in field bioassays attracted only this species. Males produced about 9 μg of pheromone per 24 h period, and, in field trials, lures loaded with 10, 25, and 100 mg of synthetic pheromone attracted beetles of both sexes, whereas lures loaded with 1 mg of pheromone or less were not significantly attractive. Other typical cerambycine pheromones such as 3-hydroxy-2-hexanone, syn-2,3-hexanediol, and anti-2,3-hexanediol were not attractive to E. mucronatum, and when combined with (2E,6Z,9Z)-2,6,9-pentadecatrienal, the former two compounds appeared to inhibit attraction. Unexpectedly, adults of the cerambycine Xylotrechus colonus (F.) were attracted in significant numbers to a blend of 3-hydroxyhexan-2-one and (2E,6Z,9Z)-2,6,9-pentadecatrienal, even though there is no evidence that this species produces the latter compound. From timed pheromone trap catches, adults of E. mucronatum were determined to be active from dusk until shortly after midnight.
Collapse
Affiliation(s)
- Jocelyn G Millar
- Department of Entomology, University of California, Riverside, CA, 92521, USA.
| | - Robert F Mitchell
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, WI, 54901, USA
| | - Linnea R Meier
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Todd D Johnson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Judith A Mongold-Diers
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Lawrence M Hanks
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|