1
|
Feau N, Tanney JB, Herath P, Zeglen S, Hamelin RC. Ophiostoma haidaense, sp. nov., a new member of the O. piceae species complex associated with yellow-cedar, Callitropsis nootkatensis. Mycologia 2024; 116:694-707. [PMID: 38905517 DOI: 10.1080/00275514.2024.2357968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/17/2024] [Indexed: 06/23/2024]
Abstract
Ophiostoma haidanensis is described as a new species of the Ophiostoma piceae complex isolated from yellow-cedar (Callitropsis nootkatensis (D. Don) Oerst. ex D.P. Little) sapwood in the Haida Gwaii island archipelago and the North Coast of British Columbia, Canada. The fungus is characterized by the production of a typical sporothrix-like asexual morph but is distinguished morphologically from other members of the O. piceae species complex by its large, multiseptate primary conidia. Phylogenetic analysis of DNA sequences from the nuc rDNA internal transcribed spacer region ITS1-5.8S-ITS2 (ITS) and the β-tubulin (BTUB) and translation elongation factor 1-α (TEF1) genes supports the inclusion of O. haidensis as a distinct member within the O. piceae complex. To our knowledge, this is the first report of a blue stain fungus infecting yellow-cedar, an ecologically, culturally, and economically important conifer naturally distributed along the coastal forests of the Pacific Northwest in North America.
Collapse
Affiliation(s)
- Nicolas Feau
- Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, British Columbia V8Z 1M5, Canada
| | - Joey B Tanney
- Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, British Columbia V8Z 1M5, Canada
| | - Padmini Herath
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia VT6 1Z4, Canada
| | - Stefan Zeglen
- West Coast Region, British Columbia Ministry of Forests, Nanaimo, British Columbia V9T 6E9, Canada
| | - Richard C Hamelin
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia VT6 1Z4, Canada
| |
Collapse
|
2
|
Deng X, Ye Z, Duan J, Chen F, Zhi Y, Huang M, Huang M, Cheng W, Dou Y, Kuang Z, Huang Y, Bian G, Deng Z, Liu T, Lu L. Complete pathway elucidation and heterologous reconstitution of (+)-nootkatone biosynthesis from Alpinia oxyphylla. THE NEW PHYTOLOGIST 2024; 241:779-792. [PMID: 37933426 DOI: 10.1111/nph.19375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/14/2023] [Indexed: 11/08/2023]
Abstract
(+)-Nootkatone is a natural sesquiterpene ketone widely used in food, cosmetics, pharmaceuticals, and agriculture. It is also regarded as one of the most valuable terpenes used commercially. However, plants contain trace amounts of (+)-nootkatone, and extraction from plants is insufficient to meet market demand. Alpinia oxyphylla is a well-known medicinal plant in China, and (+)-nootkatone is one of the main components within the fruits. By transcriptome mining and functional screening using a precursor-providing yeast chassis, the complete (+)-nootkatone biosynthetic pathway in Alpinia oxyphylla was identified. A (+)-valencene synthase (AoVS) was identified as a novel monocot-derived valencene synthase; three (+)-valencene oxidases AoCYP6 (CYP71BB2), AoCYP9 (CYP71CX8), and AoCYP18 (CYP701A170) were identified by constructing a valencene-providing yeast strain. With further characterisation of a cytochrome P450 reductase (AoCPR1) and three dehydrogenases (AoSDR1/2/3), we successfully reconstructed the (+)-nootkatone biosynthetic pathway in Saccharomyces cerevisiae, representing a basis for its biotechnological production. Identifying the biosynthetic pathway of (+)-nootkatone in A. oxyphylla unravelled the molecular mechanism underlying its formation in planta and also supported the bioengineering production of (+)-nootkatone. The highly efficient yeast chassis screening method could be used to elucidate the complete biosynthetic pathway of other valuable plant natural products in future.
Collapse
Affiliation(s)
- Xiaomin Deng
- National Key Laboratory for Tropical Crop Breeding/Ministry of Agriculture Key Laboratory of Biology and Genetic Resources of Rubber Tree/State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, Hubei, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, Hubei, China
| | - Ziling Ye
- Wuhan Hesheng Technology Co., Ltd, Wuhan, 430074, Hubei, China
| | - Jingyu Duan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, Hubei, China
| | - Fangfang Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, Hubei, China
| | - Yao Zhi
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, Hubei, China
| | - Man Huang
- Wuhan Hesheng Technology Co., Ltd, Wuhan, 430074, Hubei, China
| | - Minjian Huang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, Hubei, China
| | - Weijia Cheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, Hubei, China
| | - Yujie Dou
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, Hubei, China
| | - Zhaolin Kuang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, Hubei, China
| | - Yanglei Huang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, Hubei, China
| | - Guangkai Bian
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, Hubei, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, Hubei, China
| | - Tiangang Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, Hubei, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, Hubei, China
- Wuhan Hesheng Technology Co., Ltd, Wuhan, 430074, Hubei, China
- Wuhan University of Taikang Medical School, Wuhan University, Wuhan, 430071, Hubei, China
| | - Li Lu
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, Hubei, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, 430071, Hubei, China
| |
Collapse
|
3
|
Quarrell NJ, Strickland D, Norris DR. Investigating factors that set the lower elevational limit of Canada Jays (Perisoreus canadensis) on Vancouver Island, British Columbia, Canada. CAN J ZOOL 2022. [DOI: 10.1139/cjz-2021-0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The biotic and abiotic factors responsible for determining ranges of most species are poorly understood. The Canada Jay (Perisoreus canadensis (Linnaeus, 1766)) relies on perishable cached food for over-winter survival and late-winter breeding and the persistence of cached food could be a driver of range limits. We confirmed that the Canada Jay’s lower elevational limit on Vancouver Island, British Columbia, Canada, matches that of the subalpine zone (900 m) and then conducted simulated caching experiments to examine the influence of antimicrobial properties of subalpine tree species (biotic) and of temperature (abiotic) on the preservation of cached food. We found that two high-elevation species, yellow cedar (Callitropsis nootkatensis (D. Don) D.P. Little) and Amabilis fir (Abies amabilis Douglas ex J. Forbes), preserved cached blueberries and chicken flesh better than other trees, but they also occurred well below the lower limit of Canada Jays. The effect of temperature was similarly unclear; while food cached at 1150 m retained 17% more mass than food cached at 550 m, there was no difference in percent mass remaining of food placed 70 m above versus 120 m below the Canada Jay’s lower elevational limit. Thus, we were unable to provide definitive evidence that either of the proposed abiotic or biotic factors was responsible for setting thelower elevational limit of resident Canada Jays.
Collapse
Affiliation(s)
| | | | - D. Ryan Norris
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
4
|
Alicandri E, Covino S, Sebastiani B, Paolacci AR, Badiani M, Manti F, Bonsignore CP, Sorgonà A, Ciaffi M. Diterpene Resin Acids and Olefins in Calabrian Pine ( Pinus nigra subsp. laricio (Poiret) Maire) Oleoresin: GC-MS Profiling of Major Diterpenoids in Different Plant Organs, Molecular Identification and Expression Analysis of Diterpene Synthase Genes. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112391. [PMID: 34834754 PMCID: PMC8622628 DOI: 10.3390/plants10112391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 05/04/2023]
Abstract
A quali-quantitative analysis of diterpenoid composition in tissues obtained from different organs of Pinus nigra subsp. laricio (Poiret) Maire (Calabrian pine) was carried out. Diterpene resin acids were the most abundant diterpenoids across all the examined tissues. The same nine diterpene resin acids were always found, with the abietane type prevailing on the pimarane type, although their quantitative distribution was found to be remarkably tissue-specific. The scrutiny of the available literature revealed species specificity as well. A phylogeny-based approach allowed us to isolate four cDNAs coding for diterpene synthases in Calabrian pine, each of which belonging to one of the four groups into which the d3 clade of the plants' terpene synthases family can be divided. The deduced amino acid sequences allowed predicting that both monofunctional and bifunctional diterpene synthases are involved in the biosynthesis of diterpene resin acids in Calabrian pine. Transcript profiling revealed differential expression across the different tissues and was found to be consistent with the corresponding diterpenoid profiles. The isolation of the complete genomic sequences and the determination of their exon/intron structures allowed us to place the diterpene synthase genes from Calabrian pine on the background of current ideas on the functional evolution of diterpene synthases in Gymnosperms.
Collapse
Affiliation(s)
- Enrica Alicandri
- Dipartimento di Agraria, Università Mediterranea di Reggio Calabria, Loc. Feo di Vito, 89129 Reggio Calabria, Italy; (E.A.); (M.B.); (A.S.)
| | - Stefano Covino
- Dipartimento per la Innovazione nei Sistemi Biologici, Agroalimentari e Forestali, Università della Tuscia, Via S. Camillo De Lellis, s.n.c., 01100 Viterbo, Italy; (S.C.); (A.R.P.)
| | - Bartolomeo Sebastiani
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy;
| | - Anna Rita Paolacci
- Dipartimento per la Innovazione nei Sistemi Biologici, Agroalimentari e Forestali, Università della Tuscia, Via S. Camillo De Lellis, s.n.c., 01100 Viterbo, Italy; (S.C.); (A.R.P.)
| | - Maurizio Badiani
- Dipartimento di Agraria, Università Mediterranea di Reggio Calabria, Loc. Feo di Vito, 89129 Reggio Calabria, Italy; (E.A.); (M.B.); (A.S.)
| | - Francesco Manti
- Dipartimento di Patrimonio, Architettura e Urbanistica, Università Mediterranea di Reggio Calabria, Salita Melissari, 89124 Reggio Calabria, Italy; (F.M.); (C.P.B.)
| | - Carmelo Peter Bonsignore
- Dipartimento di Patrimonio, Architettura e Urbanistica, Università Mediterranea di Reggio Calabria, Salita Melissari, 89124 Reggio Calabria, Italy; (F.M.); (C.P.B.)
| | - Agostino Sorgonà
- Dipartimento di Agraria, Università Mediterranea di Reggio Calabria, Loc. Feo di Vito, 89129 Reggio Calabria, Italy; (E.A.); (M.B.); (A.S.)
| | - Mario Ciaffi
- Dipartimento per la Innovazione nei Sistemi Biologici, Agroalimentari e Forestali, Università della Tuscia, Via S. Camillo De Lellis, s.n.c., 01100 Viterbo, Italy; (S.C.); (A.R.P.)
- Correspondence: ; Tel.: +39-0761-357-424; Fax: +39-0761-357-389
| |
Collapse
|
5
|
Lefcort H, Tsybulnik DY, Browning RJ, Eagle HP, Eggleston TE, Magori K, Andrade CC. Behavioral characteristics and endosymbionts of two potential tularemia and Rocky Mountain spotted fever tick vectors. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2020; 45:321-332. [PMID: 33207056 DOI: 10.1111/jvec.12403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Due to climate change-induced alterations of temperature and humidity, the distribution of pathogen-carrying organisms such as ticks may shift. Tick survival is often limited by environmental factors such as dryness, but a predicted hotter and wetter world may allow the expansion of tick ranges. Dermacentor andersoni and D. variabilis ticks are morphologically similar, co-occur throughout the Inland Northwest of Washington State, U.S.A., and both can be injected with pathogenic Rickettsia and Francisella bacteria. Differences in behavior and the potential role of endosymbiotic Rickettsia and Francisella in these ticks are poorly studied. We wanted to measure behavioral and ecological differences between the two species and determine which, if any, Rickettsia and Francisella bacteria - pathogenic or endosymbiotic - they carried. Additionally, we wanted to determine if either tick species may be selected for if the climate in eastern Washington becomes wetter or dryer. We found that D. andersoni is more resistant to desiccation, but both species share similar questing behaviors such as climbing and attraction to bright light. Both also avoid the odor of eucalyptus and DEET but not permethrin. Although both tick species are capable of transmitting pathogenic species of Francisella and Rickettsia, which cause tularemia and Rocky Mountain Spotted Fever, respectively, we found primarily non-pathogenic endosymbiotic strains of Francisella and Rickettsia, and only one tick infected with F. tularensis subspecies holarctica.
Collapse
Affiliation(s)
- Hugh Lefcort
- Biology Department, Gonzaga University, Spokane, WA, 99258
| | | | | | | | | | - Krisztian Magori
- Department of Biology, Eastern Washington University, Cheney, WA, 99004
| | | |
Collapse
|
6
|
Ndjoubi KO, Sharma R, Hussein AA. The Potential of Natural Diterpenes Against Tuberculosis: An Updated Review. Curr Pharm Des 2020; 26:2909-2932. [PMID: 32532186 DOI: 10.2174/1381612826666200612163326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/28/2020] [Indexed: 11/22/2022]
Abstract
Every year, 10 million people are affected by tuberculosis (TB). Despite being a preventable and curable disease, 1.5 million people die from TB each year, making it the world's top infectious disease. Many of the frontline antibiotics cause painful and disagreeable side effects. To mitigate the side effects from the use of chemically synthesized or clinical anti-tubercular drugs, there are many research studies focussed on natural products as a source of potential anti-tuberculosis drugs. Among different phytoconstituents, several classes of diterpenoids exert significant antimicrobial effects. This review explores diterpenoids as potential anti-tubercular drugs from natural sources. A total of 204 diterpenoids isolated from medicinal plants and marine species are discussed that inhibit the growth of Mycobacterium tuberculosis. The literature from 1994-2018 is reviewed, and 158 diterpenoids from medicinal plants, as well as 40 diterpenoids from marines, are alluded to have antituberculosis properties. The antitubercular activities discussed in the review indicate that the type of diterpenoids, the Mtb strains, substituents attached to diterpenoids and their position in the diterpenoids general skeleton can change the compounds antimycobacterial inhibitory effects.
Collapse
Affiliation(s)
- Kadidiatou O Ndjoubi
- Chemistry Department, Cape Peninsula University of Technology, Bellville Campus, Symphony Road, 7535 Bellville, South Africa
| | - Rajan Sharma
- Chemistry Department, Cape Peninsula University of Technology, Bellville Campus, Symphony Road, 7535 Bellville, South Africa
| | - Ahmed A Hussein
- Chemistry Department, Cape Peninsula University of Technology, Bellville Campus, Symphony Road, 7535 Bellville, South Africa
| |
Collapse
|
7
|
Ma LT, Lee YR, Tsao NW, Wang SY, Zerbe P, Chu FH. Biochemical characterization of diterpene synthases of Taiwania cryptomerioides expands the known functional space of specialized diterpene metabolism in gymnosperms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:1254-1272. [PMID: 31448467 DOI: 10.1111/tpj.14513] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/13/2019] [Accepted: 08/19/2019] [Indexed: 05/20/2023]
Abstract
Taiwania cryptomerioides is a monotypic gymnosperm species, valued for the high decay resistance of its wood. This durability has been attributed to the abundance of terpenoids, especially the major diterpenoid metabolite ferruginol, with antifungal and antitermite activity. Specialized diterpenoid metabolism in gymnosperms primarily recruits bifunctional class-I/II diterpene synthases (diTPSs), whereas monofunctional class-II and class-I enzymes operate in angiosperms. In this study, we identified a previously unrecognized group of monofunctional diTPSs in T. cryptomerioides, which suggests a distinct evolutionary divergence of the diTPS family in this species. Specifically, five monofunctional diTPS functions not previously observed in gymnosperms were characterized, including monofunctional class-II enzymes forming labda-13-en-8-ol diphosphate (LPP, TcCPS2) and (+)-copalyl diphosphate (CPP, TcCPS4), and three class-I diTPSs producing biformene (TcKSL1), levopimaradiene (TcKSL3) and phyllocladanol (TcKSL5), respectively. Methyl jasmonate (MeJA) elicited the accumulation of levopimaradiene and the corresponding biosynthetic diTPS genes, TcCPS4 and TcKSL3, is consistent with a possible role in plant defense. Furthermore, TcCPS4 and TcKSL3 are likely to contribute to abietatriene biosynthesis via levopimaradiene as an intermediate in ferruginol biosynthesis in Taiwania. In conclusion, this study provides deeper insight into the functional landscape and molecular evolution of specialized diterpenoid metabolism in gymnosperms as a basis to better understand the role of these metabolites in tree chemical defense.
Collapse
Affiliation(s)
- Li-Ting Ma
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, 10617, Taiwan
| | - Yi-Ru Lee
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, 10617, Taiwan
| | - Nai-Wen Tsao
- Department of Forestry, National Chung-Hsing University, Taichung, 402, Taiwan
| | - Sheng-Yang Wang
- Department of Forestry, National Chung-Hsing University, Taichung, 402, Taiwan
| | - Philipp Zerbe
- Department of Plant Biology, University of California at Davis, Davis, CA, 95616, USA
| | - Fang-Hua Chu
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
8
|
Galisteo Pretel A, Pérez del Pulgar H, Olmeda AS, Gonzalez-Coloma A, Barrero AF, Quílez del Moral JF. Novel Insect Antifeedant and Ixodicidal Nootkatone Derivatives. Biomolecules 2019; 9:biom9110742. [PMID: 31744055 PMCID: PMC6921050 DOI: 10.3390/biom9110742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/06/2019] [Accepted: 11/12/2019] [Indexed: 11/21/2022] Open
Abstract
Naturally occurring nootkatone, with reported insecticidal and acaricidal properties, has been used as a lead to generate molecular diversity and, consequently, new insect antifeedant and ixodicidal compounds. A total of 22 derivatives were generated by subjecting this molecule to several reactions including dehydrogenation with the iodine/DMSO system, oxidation with SeO2, epoxidation with mCPBA, oxidation or carbon homologations of the α-carbonyl position with TMSOTf (trimethylsilyl trifluoromethanesulfonate) followed by Rubottom and Dess Martin periodane oxidations, condensation with formaldehyde using Yb(OTf)3 as catalyst and dehydroxilation using the Grieco protocol. The insect antifeedant (against Myzus persicae and Ropaloshysum padi) and ixodicidal (against the tick Hyalomma lusitanicum) activities of these compounds were tested. Compound 20 was the most active substance against M. persicae and R. padi, and twice more efficient than nootkatone in the antitick test.
Collapse
Affiliation(s)
- Alberto Galisteo Pretel
- Department of Organic Chemistry, Institute of Biotechnology, University of Granada, 18071 Granada, Spain; (A.G.P.); (H.P.d.P.)
| | - Helena Pérez del Pulgar
- Department of Organic Chemistry, Institute of Biotechnology, University of Granada, 18071 Granada, Spain; (A.G.P.); (H.P.d.P.)
| | - A. Sonia Olmeda
- Faculty of Veterinary, Complutense University of Madrid (UCM), 28040 Madrid, Spain;
| | | | - Alejandro F. Barrero
- Department of Organic Chemistry, Institute of Biotechnology, University of Granada, 18071 Granada, Spain; (A.G.P.); (H.P.d.P.)
- Correspondence: (A.F.B.); (J.F.Q.d.M.); Tel.: +34-958243185 (A.F.B. & J.F.Q.d.M.)
| | - José Francisco Quílez del Moral
- Department of Organic Chemistry, Institute of Biotechnology, University of Granada, 18071 Granada, Spain; (A.G.P.); (H.P.d.P.)
- Correspondence: (A.F.B.); (J.F.Q.d.M.); Tel.: +34-958243185 (A.F.B. & J.F.Q.d.M.)
| |
Collapse
|
9
|
Alves KF, Caetano FH, Pereira Garcia IJ, Santos HL, Silva DB, Siqueira JM, Tanaka AS, Alves SN. Baccharis dracunculifolia (Asteraceae) essential oil toxicity to Culex quinquefasciatus (Culicidae). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:31718-31726. [PMID: 30209768 DOI: 10.1007/s11356-018-3149-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 09/03/2018] [Indexed: 06/08/2023]
Abstract
The control of mosquitoes by means of chemical insecticides has been a problem, mainly due to the possibility of resistance developed by insects to xenobiotics. For this reason, demand for botanical insecticides has increased. In this sense, the present work aims to verify the susceptibility and morphological and biochemical alterations of Culex quinquefasciatus larvae after exposure to essential oil (EO) of leaves of Baccharis dracunculifolia. To observe the larvicidal action, larvae were exposed to EO at concentrations of 25, 50, 100, and 200 mg/L, until their emergence to adults. The control group was exposed to deionized water and dimethyl sulfoxide. Morphological analyses were also carried out using hematoxylin and eosin, mercury bromophenol blue, Nile blue, and periodic acid Schiff. Biochemical analyses of total glucose, triacylglyceride (TAG), protein, and acetylcholinesterase levels were performed. The phytochemical analysis of the EO showed (E)-nerolidol as the major compound (30.62%). Larvae susceptibility results showed a LC50 of 34.45 mg/L for EO. Morphological analysis showed that there were histological changes in midgut. For biochemical analyses, the glucose level in the larvae exposed to EO for 24 h decreased significantly, unlike the TAG levels, which increased. The total protein level of the larvae also increased after exposure for 24 h, and acetylcholinesterase levels decreased significantly. Taking all our data into account, we can conclude that EO causes destabilization in larva, leading to histological changes, metabolic deregulation and, consequently, their death.
Collapse
Affiliation(s)
- Kyvia F Alves
- Campus Centro-Oeste Dona Lindu, Universidade Federal de São João del Rei, Av. Sebastião Gonçalves Coelho, 400 - Chanadour, Divinópolis, MG,, CEP 35501-296, Brazil
| | - Flávio H Caetano
- Departamento de Biologia, Universidade Estadual Paulista Júlio de Mesquita Filho, Instituto de Biociências de Rio Claro, Av. 24 A, 1515 - Jardim Vila Bela, Rio Claro, SP, 13506-900, Brazil
| | - Israel J Pereira Garcia
- Campus Centro-Oeste Dona Lindu, Universidade Federal de São João del Rei, Av. Sebastião Gonçalves Coelho, 400 - Chanadour, Divinópolis, MG,, CEP 35501-296, Brazil
| | - Hérica L Santos
- Campus Centro-Oeste Dona Lindu, Universidade Federal de São João del Rei, Av. Sebastião Gonçalves Coelho, 400 - Chanadour, Divinópolis, MG,, CEP 35501-296, Brazil
| | - Denise B Silva
- Centro de Ciências Biológicas e da Saúde, Universidade Federal do Mato Grosso do Sul, Cidade Universitária - Pioneiros, Campo Grande, MS, 79070-900, Brazil
| | - João M Siqueira
- Campus Centro-Oeste Dona Lindu, Universidade Federal de São João del Rei, Av. Sebastião Gonçalves Coelho, 400 - Chanadour, Divinópolis, MG,, CEP 35501-296, Brazil
| | - Aparecida S Tanaka
- Departamento de Bioquímica, Univesridade Federal de São Paulo, R. 3 de maio, 100 - Vila Clementino, São Paulo, SP, 04044-020, Brazil
| | - Stênio N Alves
- Campus Centro-Oeste Dona Lindu, Universidade Federal de São João del Rei, Av. Sebastião Gonçalves Coelho, 400 - Chanadour, Divinópolis, MG,, CEP 35501-296, Brazil.
| |
Collapse
|