1
|
López-García CM, Ávila-Hernández CA, Quintana-Rodríguez E, Aguilar-Hernández V, Lozoya-Pérez NE, Rojas-Raya MA, Molina-Torres J, Araujo-León JA, Brito-Argáez L, González-Sánchez AA, Ramírez-Chávez E, Orona-Tamayo D. Extracellular Self- and Non-Self DNA Involved in Damage Recognition in the Mistletoe Parasitism of Mesquite Trees. Int J Mol Sci 2023; 25:457. [PMID: 38203628 PMCID: PMC10778891 DOI: 10.3390/ijms25010457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/16/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Psittacanthus calyculatus parasitizes mesquite trees through a specialized structure called a haustorium, which, in the intrusive process, can cause cellular damage in the host tree and release DAMPs, such as ATP, sugars, RNA, and DNA. These are highly conserved molecules that primarily function as signals that trigger and activate the defense responses. In the present study, we generate extracellular DNA (exDNA) from mesquite (P. laevigata) tree leaves (self-exDNA) and P. calyculatus (non-self exDNA) mistletoe as DAMP sources to examine mesquite trees' capacity to identify specific self or non-self exDNA. We determined that mesquite trees perceive self- and non-self exDNA with the synthesis of O2•-, H2O2, flavonoids, ROS-enzymes system, MAPKs activation, spatial concentrations of JA, SA, ABA, and CKs, and auxins. Our data indicate that self and non-self exDNA application differs in oxidative burst, JA signaling, MAPK gene expression, and scavenger systems. This is the first study to examine the molecular biochemistry effects in a host tree using exDNA sources derived from a mistletoe.
Collapse
Affiliation(s)
- Claudia Marina López-García
- Medio Ambiente y Biotecnología, Centro de Innovación Aplicada en Tecnologías Competitivas (CIATEC), León 37545, Guanajuato, Mexico; (C.M.L.-G.)
| | - César Alejandro Ávila-Hernández
- Centro de Investigación y de Estudios Avanzados (CINVESTAV), Instituto Politécnico Nacional, Irapuato 36821, Guanajuato, Mexico; (C.A.Á.-H.); (M.A.R.-R.); (E.R.-C.)
| | - Elizabeth Quintana-Rodríguez
- Medio Ambiente y Biotecnología, Centro de Innovación Aplicada en Tecnologías Competitivas (CIATEC), León 37545, Guanajuato, Mexico; (C.M.L.-G.)
| | - Víctor Aguilar-Hernández
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán (CICY), Mérida 97205, Yucatán, Mexico (J.A.A.-L.)
| | - Nancy Edith Lozoya-Pérez
- Medio Ambiente y Biotecnología, Centro de Innovación Aplicada en Tecnologías Competitivas (CIATEC), León 37545, Guanajuato, Mexico; (C.M.L.-G.)
| | - Mariana Atzhiry Rojas-Raya
- Centro de Investigación y de Estudios Avanzados (CINVESTAV), Instituto Politécnico Nacional, Irapuato 36821, Guanajuato, Mexico; (C.A.Á.-H.); (M.A.R.-R.); (E.R.-C.)
| | - Jorge Molina-Torres
- Centro de Investigación y de Estudios Avanzados (CINVESTAV), Instituto Politécnico Nacional, Irapuato 36821, Guanajuato, Mexico; (C.A.Á.-H.); (M.A.R.-R.); (E.R.-C.)
| | - Jesús Alfredo Araujo-León
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán (CICY), Mérida 97205, Yucatán, Mexico (J.A.A.-L.)
| | - Ligia Brito-Argáez
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán (CICY), Mérida 97205, Yucatán, Mexico (J.A.A.-L.)
| | | | - Enrique Ramírez-Chávez
- Centro de Investigación y de Estudios Avanzados (CINVESTAV), Instituto Politécnico Nacional, Irapuato 36821, Guanajuato, Mexico; (C.A.Á.-H.); (M.A.R.-R.); (E.R.-C.)
| | - Domancar Orona-Tamayo
- Medio Ambiente y Biotecnología, Centro de Innovación Aplicada en Tecnologías Competitivas (CIATEC), León 37545, Guanajuato, Mexico; (C.M.L.-G.)
| |
Collapse
|
2
|
Mudgal G, Kaur J, Chand K, Parashar M, Dhar SK, Singh GB, Gururani MA. Mitigating the Mistletoe Menace: Biotechnological and Smart Management Approaches. BIOLOGY 2022; 11:1645. [PMID: 36358346 PMCID: PMC9687506 DOI: 10.3390/biology11111645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 09/10/2023]
Abstract
Mistletoes have been considered a keystone resource for biodiversity, as well as a remarkable source of medicinal attributes that attract pharmacologists. Due to their hemiparasitic nature, mistletoes leach water and nutrients, including primary and secondary metabolites, through the vascular systems of their plant hosts, primarily trees. As a result of intense mistletoe infection, the hosts suffer various growth and physiological detriments, which often lead to tree mortality. Because of their easy dispersal and widespread tropism, mistletoes have become serious pests for commercial fruit and timber plantations. A variety of physical and chemical treatment methods, along with silvicultural practices, have shaped conventional mistletoe management. Others, however, have either failed to circumvent the growing range and tropism of these parasitic plants or present significant environmental and public health risks. A biocontrol approach that could sidestep these issues has never achieved full proof of concept in real-field applications. Our review discusses the downsides of conventional mistletoe control techniques and explores the possibilities of biotechnological approaches using biocontrol agents and transgenic technologies. It is possible that smart management options will pave the way for technologically advanced solutions to mitigate mistletoes that are yet to be exploited.
Collapse
Affiliation(s)
- Gaurav Mudgal
- University Institute of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India
| | - Jaspreet Kaur
- University Institute of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India
| | - Kartar Chand
- University Institute of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India
| | - Manisha Parashar
- University Institute of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India
| | - Sanjoy K. Dhar
- University Institute of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India
| | - Gajendra B. Singh
- University Institute of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India
| | - Mayank A. Gururani
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| |
Collapse
|
3
|
Moyo B, Tavengwa NT, Madala NE. Diverse chemical modifications of the chlorogenic acid composition of Viscum combreticola Engl.: A premise for the state of readiness against excessive sunlight exposure. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 233:112501. [PMID: 35751972 DOI: 10.1016/j.jphotobiol.2022.112501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 12/11/2022]
Abstract
Mistletoe plants that are positioned on the canopy of their hosts are more susceptible to UV radiation exposure. These aerial plants are resistant to damage by UV radiation due the presence of epidermal constituents such as the cuticle, cork layer, trichomes and antioxidant secondary metabolites. In response to the photo-oxidative stress associated with UV exposure, plants generally deploy photo-protective responsive mechanisms that involve the biosynthesis of UV absorbing phenolic compounds such as chlorogenic acids (CGAs). The hydroxycinnamic acid moieties of these CGAs are predominantly in the trans configuration, naturally. However, excessive sunlight exposure of plants containing these compounds can result in geometrical isomerisation, characterized by the formation of cis isomers. Therefore, in this study, the effect of UV light radiation on the CGA composition of Viscum combreticola Engl. (Santalacaeae) plants using an in vitro model was unravelled through UHPLC-q-TOF-MS-based metabolic profiling. Interestingly, the findings of this study revealed that this plant has a diverse chemical composition of CGAs that is characterized by epimerization, monoacylation, homodiacylation and heterodiacylation of the quinic acid (QA), thereby, contributing to the state of readiness in these plants against sunlight or UV exposure. In addition to the commonly reported cinnamoyl containing heterodiacylated CGAs, hydroxybenzoyl containing heterodiacylated CGAs were also reported in this study. Moreover, cis isomers (24 in total) of some CGAs were identified in the non-irradiated samples and the formation of these compounds has been reported to help plants in the mitigation of photo-oxidative stress. An additional 28 cis isomers of CGAs and HCA derivatives were observed in the UV-irradiated samples, hence, further increasing the complexity of the metabolome of this plant, with a total of 108 compounds identified in this study. The presence of epimers, positional and geometrical isomers of these compounds could be a biochemical strategy to maximize the chemical arsenal of this plant to withstand the photo-oxidative stress posed by UV radiation from the sunlight. Due to purported pharmacological properties associated with the identified compounds these parasitic plants can be a rich source of prospective therapeutic compounds that can be employed as drug discovery leads. Moreover, UV radiation might be essential in future to produce potent drugs since plants naturally produce these compounds in low quantities.
Collapse
Affiliation(s)
- Babra Moyo
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; Department of Food Science and Technology, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa
| | - Nikita Tawanda Tavengwa
- Department of Chemistry, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa
| | - Ntakadzeni Edwin Madala
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa.
| |
Collapse
|
4
|
Fontúrbel FE, Rodríguez-Gómez GB, Orellana JI, Cortés-Miranda J, Rojas-Hernández N, Vega-Retter C. Geographical context outweighs habitat disturbance effects in explaining mistletoe population genetic differentiation at a regional scale. Mol Ecol 2022; 31:1389-1402. [PMID: 34995392 DOI: 10.1111/mec.16337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/03/2021] [Accepted: 12/17/2021] [Indexed: 11/29/2022]
Abstract
Genetic differentiation depends on ecological and evolutionary processes that operate at different spatial and temporal scales. While the geographical context is likely to determine large-scale genetic variation patterns, habitat disturbance events will probably influence small-scale genetic diversity and gene flow patterns. Therefore, the genetic diversity patterns that we observe today result from the combination of both processes, but they are rarely assessed simultaneously. We determined the population structure and genetic diversity of a hemiparasitic mistletoe (Tristerix corymbosus) from the temperate rainforests of southern Chile to determine the effects of geographical context and habitat disturbance at a regional scale and if it is affected by the abundance and occurrence of its seed disperser mutualist (the arboreal marsupial Dromiciops gliroides). We genotyped 359 individuals from 12 populations using single nucleotide polymorphisms, across three different geographical contexts and four disturbance conditions. We also used camera traps to estimate the abundance and occurrence of the seed disperser. Our results suggest that genetic differences among populations are related more to geographical context than to habitat disturbance. However, as disturbance increased, D. gliroides abundance and occurrence decreased, and mistletoe inbreeding index (FIS ) increased. We also found highly uneven gene flow among study sites. Despite the high levels of disturbance that these temperate rainforests are facing, our results suggest that mistletoe genetic differentiation at a regional scale was more influenced by historical events. However, habitat disturbance can indirectly affect mistletoe population genetic differentiation via the seed dispersal process, which may increase levels of inbreeding.
Collapse
Affiliation(s)
- Francisco E Fontúrbel
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.,Millennium Nucleus of Patagonian Limit of Life (LiLi)
| | - Gloria B Rodríguez-Gómez
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - José I Orellana
- Laboratorio de Vida Silvestre, Universidad de Los Lagos, Osorno, Chile
| | - Jorge Cortés-Miranda
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Noemí Rojas-Hernández
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Caren Vega-Retter
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
5
|
Lázaro-González A, Gargallo-Garriga A, Hódar JA, Sardans J, Oravec M, Urban O, Peñuelas J, Zamora R. Implications of mistletoe parasitism for the host metabolome: A new plant identity in the forest canopy. PLANT, CELL & ENVIRONMENT 2021; 44:3655-3666. [PMID: 34486744 DOI: 10.1111/pce.14179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Mistletoe-host systems exemplify an intimate and chronic relationship where mistletoes represent protracted stress for hosts, causing long-lasting impact. Although host changes in morphological and reproductive traits due to parasitism are well known, shifts in their physiological system, altering metabolite concentrations, are less known due to the difficulty of quantification. Here, we use ecometabolomic techniques in the plant-plant interaction, comparing the complete metabolome of the leaves from mistletoe (Viscum album) and needles from their host (Pinus nigra), both parasitized and unparasitized, to elucidate host responses to plant parasitism. Our results show that mistletoe acquires metabolites basically from the primary metabolism of its host and synthesizes its own defence compounds. In response to mistletoe parasitism, pines modify a quarter of their metabolome over the year, making the pine canopy metabolome more homogeneous by reducing the seasonal shifts in top-down stratification. Overall, host pines increase antioxidant metabolites, suggesting oxidative stress, and also increase part of the metabolites required by mistletoe, which act as a permanent sink of host resources. In conclusion, by exerting biotic stress and thereby causing permanent systemic change, mistletoe parasitism generates a new host-plant metabolic identity available in forest canopy, which could have notable ecological consequences in the forest ecosystem.
Collapse
Affiliation(s)
- Alba Lázaro-González
- Department of Ecology, Terrestrial Ecology Research Group, University of Granada, Granada, Spain
| | - Albert Gargallo-Garriga
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Spain
- CREAF, Cerdanyola del Vallès, Spain
- Global Change Research Institute, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - José Antonio Hódar
- Department of Ecology, Terrestrial Ecology Research Group, University of Granada, Granada, Spain
| | - Jordi Sardans
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Spain
- CREAF, Cerdanyola del Vallès, Spain
| | - Michal Oravec
- Global Change Research Institute, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Otmar Urban
- Global Change Research Institute, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Spain
- CREAF, Cerdanyola del Vallès, Spain
| | - Regino Zamora
- Department of Ecology, Terrestrial Ecology Research Group, University of Granada, Granada, Spain
| |
Collapse
|
6
|
Tagawa K, Watanabe M. Can sticky plants reduce herbivory of neighboring plants? Ecology 2020; 102:e03240. [PMID: 33188640 DOI: 10.1002/ecy.3240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/31/2020] [Accepted: 09/18/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Kazuki Tagawa
- Department of Education, Miyazaki International College, 1405 Kano, Kiyotake-cho, Miyazaki, 889-1605, Japan
| | - Mikio Watanabe
- Department of Biology, Faculty of Education, Aichi University of Education, Kariya City, Aichi, 448-8542, Japan
| |
Collapse
|
7
|
Sharma KP. Tannin degradation by phytopathogen's tannase: A Plant's defense perspective. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Mellado A, Hobby A, Lázaro-González A, Watson DM. Hemiparasites drive heterogeneity in litter arthropods: Implications for woodland insectivorous birds. AUSTRAL ECOL 2019. [DOI: 10.1111/aec.12748] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ana Mellado
- Terrestrial Ecology Research Group; Department of Ecology; University of Granada; Granada Spain
| | - Annie Hobby
- Institute for Land, Water and Society; Charles Sturt University; PO Box 789 Albury Wodonga 2640 New South Wales Australia
| | - Alba Lázaro-González
- Terrestrial Ecology Research Group; Department of Ecology; University of Granada; Granada Spain
| | - David M. Watson
- Institute for Land, Water and Society; Charles Sturt University; PO Box 789 Albury Wodonga 2640 New South Wales Australia
| |
Collapse
|
9
|
Lázaro‐González A, Hódar JA, Zamora R. Mistletoe generates non‐trophic and trait‐mediated indirect interactions through a shared host of herbivore consumers. Ecosphere 2019. [DOI: 10.1002/ecs2.2564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Alba Lázaro‐González
- Terrestrial Ecology Research Group Department of Ecology Faculty of Science University of Granada Av. Fuentenueva s/n Granada E‐18071 Spain
| | - José A. Hódar
- Terrestrial Ecology Research Group Department of Ecology Faculty of Science University of Granada Av. Fuentenueva s/n Granada E‐18071 Spain
| | - Regino Zamora
- Terrestrial Ecology Research Group Department of Ecology Faculty of Science University of Granada Av. Fuentenueva s/n Granada E‐18071 Spain
| |
Collapse
|