1
|
Walsh C, Vanderburgh C, Grant L, Katz E, Kliebenstein DJ, Fierer N. Microbial terroir: associations between soil microbiomes and the flavor chemistry of mustard (Brassica juncea). THE NEW PHYTOLOGIST 2024; 243:1951-1965. [PMID: 38553428 DOI: 10.1111/nph.19708] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/05/2024] [Indexed: 08/02/2024]
Abstract
Here, we characterized the independent role of soil microbiomes (bacterial and fungal communities) in determining the flavor chemistry of harvested mustard seed (Brassica juncea). Given the known impacts of soil microbial communities on various plant characteristics, we hypothesized that differences in rhizosphere microbiomes would result in differences in seed flavor chemistry (glucosinolate content). In a glasshouse study, we introduced distinct soil microbial communities to mustard plants growing in an otherwise consistent environment. At the end of the plant life cycle, we characterized the rhizosphere and root microbiomes and harvested produced mustard seeds for chemical characterization. Specifically, we measured the concentrations of glucosinolates, secondary metabolites known to create spicy and bitter flavors. We examined associations between rhizosphere microbial taxa or genes and seed flavor chemistry. We identified links between the rhizosphere microbial community composition and the concentration of the main glucosinolate, allyl, in seeds. We further identified specific rhizosphere taxa predictive of seed allyl concentration and identified bacterial functional genes, namely genes for sulfur metabolism, which could partly explain the observed associations. Together, this work offers insight into the potential influence of the belowground microbiome on the flavor of harvested crops.
Collapse
Affiliation(s)
- Corinne Walsh
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, 80309, USA
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Caihong Vanderburgh
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Lady Grant
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Ella Katz
- Department of Plant Sciences, University of California Davis, Davis, CA, 95616, USA
| | | | - Noah Fierer
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, 80309, USA
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, 80309, USA
| |
Collapse
|
2
|
Wang Z, Fu X, Kuramae EE. Insight into farming native microbiome by bioinoculant in soil-plant system. Microbiol Res 2024; 285:127776. [PMID: 38820701 DOI: 10.1016/j.micres.2024.127776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/02/2024]
Abstract
Applying beneficial microorganisms (BM) as bioinoculants presents a promising soil-amendment strategy while impacting the native microbiome, which jointly alters soil-plant performance. Leveraging the untapped potential of native microbiomes alongside bioinoculants may enable farmers to sustainably regulate soil-plant systems via natural bioresources. This review synthesizes literature on native microbiome responses to BMs and their interactive effects on soil and plant performance. We highlight that native microbiomes harbor both microbial "helpers" that can improve soil fertility and plant productivity, as well as "inhibitors" that hinder these benefits. To harness the full potential of resident microbiome, it is crucial to elucidate their intricate synergistic and antagonistic interplays with introduced BMs and clarify the conditions that facilitate durable BM-microbiome synergies. Hence, we indicate current challenges in predicting these complex microbial interactions and propose corresponding strategies for microbiome breeding via BM bioinoculant. Overall, fully realizing the potential of BMs requires clarifying their interactions with native soil microbiomes and judiciously engineering microbiome to harness helpful microbes already present within agroecosystems.
Collapse
Affiliation(s)
- Zhikang Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen 6708 PB, the Netherlands
| | - Xiangxiang Fu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China.
| | - Eiko E Kuramae
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen 6708 PB, the Netherlands; Ecology and biodiversity, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, the Netherlands.
| |
Collapse
|
3
|
Lyu X, Diao H, Li J, Meng Z, Li B, Zhou L, Guo S. Untargeted metabolomics in Anectocillus roxburghii with habitat heterogeneity and the key abiotic factors affecting its active ingredients. FRONTIERS IN PLANT SCIENCE 2024; 15:1368880. [PMID: 38533408 PMCID: PMC10964796 DOI: 10.3389/fpls.2024.1368880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024]
Abstract
Introduction Anoectochilus roxburghii is a rare, endangered herb with diverse pharmacological properties. Understanding the main metabolite types and characteristics of wild A. roxburghii is important for efficiently utilizing resources and examining quality according to origin. Methods Samples were collected from the main production areas across five regions in Fujian Province, China. An untargeted metabolomics analysis was performed on the entire plants to explore their metabolic profiles. We utilized UPLC-MS/MS to specifically quantify eight targeted flavonoids in these samples. Subsequently, correlation analysis was conducted to investigate the relationships between the flavonoids content and both the biological characteristics and geographical features. Results A comprehensive analysis identified a total of 3,170 differential metabolites, with terpenoids and flavonoids being the most prevalent classes. A region-specific metabolite analysis revealed that the Yongchun (YC) region showed the highest diversity of unique metabolites, including tangeretin and oleanolic acid. Conversely, the Youxi (YX) region was found to have the smallest number of unique metabolites, with only one distinct compound identified. Further investigation through KEGG pathway enrichment analysis highlighted a significant enrichment in pathways related to flavonoid biosynthesis. Further examination of the flavonoid category showed that flavonols were the most differentially abundant. We quantified eight specific flavonoids, finding that, on average, the YX region exhibited higher levels of these compounds. Correlation analysis highlighted a significant association between flavonoids and habitat, especially temperature and humidity. Discussion Untargeted metabolomics via LC-MS was suitable for identifying region-specific metabolites and their influence via habitat heterogeneity. The results of this study serve as a new theoretical reference for unique markers exclusively present in a specific sample group.
Collapse
Affiliation(s)
- Xinkai Lyu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Basis and New Drug Development of Natural and Nuclear Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haixin Diao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaxue Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhixia Meng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bing Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lisi Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shunxing Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Basis and New Drug Development of Natural and Nuclear Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Carper DL, Appidi MR, Mudbhari S, Shrestha HK, Hettich RL, Abraham PE. The Promises, Challenges, and Opportunities of Omics for Studying the Plant Holobiont. Microorganisms 2022; 10:microorganisms10102013. [PMID: 36296289 PMCID: PMC9609723 DOI: 10.3390/microorganisms10102013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
Microorganisms are critical drivers of biological processes that contribute significantly to plant sustainability and productivity. In recent years, emerging research on plant holobiont theory and microbial invasion ecology has radically transformed how we study plant–microbe interactions. Over the last few years, we have witnessed an accelerating pace of advancements and breadth of questions answered using omic technologies. Herein, we discuss how current state-of-the-art genomics, transcriptomics, proteomics, and metabolomics techniques reliably transcend the task of studying plant–microbe interactions while acknowledging existing limitations impeding our understanding of plant holobionts.
Collapse
Affiliation(s)
- Dana L. Carper
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Manasa R. Appidi
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Graduate School of Genome Science and Technology, University of Tennessee-Knoxville, Knoxville, TN 37996, USA
| | - Sameer Mudbhari
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Graduate School of Genome Science and Technology, University of Tennessee-Knoxville, Knoxville, TN 37996, USA
| | - Him K. Shrestha
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Graduate School of Genome Science and Technology, University of Tennessee-Knoxville, Knoxville, TN 37996, USA
| | - Robert L. Hettich
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Paul E. Abraham
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Correspondence:
| |
Collapse
|
5
|
Griggs RG, Steenwerth KL, Mills DA, Cantu D, Bokulich NA. Sources and Assembly of Microbial Communities in Vineyards as a Functional Component of Winegrowing. Front Microbiol 2021; 12:673810. [PMID: 33927711 PMCID: PMC8076609 DOI: 10.3389/fmicb.2021.673810] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 03/22/2021] [Indexed: 01/05/2023] Open
Abstract
Microbiomes are integral to viticulture and winemaking – collectively termed winegrowing – where diverse fungi and bacteria can exert positive and negative effects on grape health and wine quality. Wine is a fermented natural product, and the vineyard serves as a key point of entry for quality-modulating microbiota, particularly in wine fermentations that are conducted without the addition of exogenous yeasts. Thus, the sources and persistence of wine-relevant microbiota in vineyards critically impact its quality. Site-specific variations in microbiota within and between vineyards may contribute to regional wine characteristics. This includes distinctions in microbiomes and microbiota at the strain level, which can contribute to wine flavor and aroma, supporting the role of microbes in the accepted notion of terroir as a biological phenomenon. Little is known about the factors driving microbial biodiversity within and between vineyards, or those that influence annual assembly of the fruit microbiome. Fruit is a seasonally ephemeral, yet annually recurrent product of vineyards, and as such, understanding the sources of microbiota in vineyards is critical to the assessment of whether or not microbial terroir persists with inter-annual stability, and is a key factor in regional wine character, as stable as the geographic distances between vineyards. This review examines the potential sources and vectors of microbiota within vineyards, general rules governing plant microbiome assembly, and how these factors combine to influence plant-microbe interactions relevant to winemaking.
Collapse
Affiliation(s)
- Reid G Griggs
- Department of Viticulture and Enology, Robert Mondavi Institute for Wine and Food Science, University of California, Davis, Davis, CA, United States
| | - Kerri L Steenwerth
- USDA-ARS, Crops Pathology and Genetics Research Unit, Department of Land, Air and Water Resources, University of California, Davis, Davis, CA, United States
| | - David A Mills
- Department of Viticulture and Enology, Robert Mondavi Institute for Wine and Food Science, University of California, Davis, Davis, CA, United States.,Department of Food Science and Technology, Robert Mondavi Institute for Wine and Food Science, University of California, Davis, Davis, CA, United States.,Foods for Health Institute, University of California, Davis, Davis, CA, United States
| | - Dario Cantu
- Department of Viticulture and Enology, Robert Mondavi Institute for Wine and Food Science, University of California, Davis, Davis, CA, United States
| | - Nicholas A Bokulich
- Laboratory of Food Systems Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Ali JG, Casteel CL, Mauck KE, Trase O. Chemical Ecology of Multitrophic Microbial Interactions: Plants, Insects, Microbes and the Metabolites that Connect Them. J Chem Ecol 2021; 46:645-648. [PMID: 32776182 DOI: 10.1007/s10886-020-01209-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Jared G Ali
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - C L Casteel
- Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14850, USA.
| | - K E Mauck
- Department of Entomology, University of California, Riverside, Riverside, CA, 92521, USA.
| | - O Trase
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
7
|
Integrative analysis of the microbiome and metabolome in understanding the causes of sugarcane bitterness. Sci Rep 2021; 11:6024. [PMID: 33727648 PMCID: PMC7966368 DOI: 10.1038/s41598-021-85433-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/28/2021] [Indexed: 02/07/2023] Open
Abstract
Plant–microbe interactions can modulate the plant metabolome, but there is no information about how different soil microbiomes could affect the sugarcane metabolome and its quality. Here, we collected soil and stalk samples from bitter sugarcane (BS) and sweet sugarcane (SS) to conduct chemical analysis, microbiome and metabolome analysis. Our data revealed lower species diversity in the BS group than in the SS group, and 18 discriminatory OTUs (relative abundance ≥ 0.01%) were identified. Sugarcane metabolomic analysis indicated the different abundances of 247 metabolites between the two groups in which 22 distinct metabolites involved in two flavonoid biosynthesis pathways were revealed. Integrated analysis between soil microbial taxa, stalk chemical components, and soil properties showed that the flavonoid content in stalks and the nitrogen concentration in soil were highly correlated with the soil microbiome composition. Bacteria at the genus level exhibited greater associations with distinct metabolites, and six genera were independently associated with 90.9% of the sugarcane metabolites that play a major metabolic role in sugarcane. In conclusion, this study provided evidences that the interaction between plant–microbiome can change the plant metabolome.
Collapse
|