1
|
Chen GY, Huang SY, Lin MD, Chouvenc T, Ching YH, Li HF. Hybrids of two destructive subterranean termites established in the field, revealing a potential for gene flow between species. Heredity (Edinb) 2024; 132:257-266. [PMID: 38509263 PMCID: PMC11074111 DOI: 10.1038/s41437-024-00679-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
Hybridization between invasive pest species may lead to significant genetic and economic impacts that require close monitoring. The two most invasive and destructive termite species worldwide, Coptotermes formosanus Shiraki and Coptotermes gestroi (Wasmann), have the potential for hybridization in the field. A three-year field survey conducted during the dispersal flight season of Coptotermes in Taiwan identified alates with atypical morphology, which were confirmed as hybrids of the two Coptotermes species using microsatellite and mitochondrial analyses. Out of 27,601 alates collected over three years, 4.4% were confirmed as hybrid alates, and some advanced hybrids (>F1 generations) were identified. The hybrid alates had a dispersal flight season that overlapped with the two parental species 13 out of 15 times. Most of the hybrid alates were females, implying that mating opportunities beyond F1 may primarily be possible through female hybrids. However, the incipient colony growth results from all potential mating combinations suggest that only backcross colonies with hybrid males could sometimes lead to brood development. The observed asymmetrical viability and fertility of hybrid alates may critically reduce the probability of advanced-hybrid colonies being established in the field.
Collapse
Affiliation(s)
- Guan-Yu Chen
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| | - Shih-Ying Huang
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| | - Ming-Der Lin
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Thomas Chouvenc
- Department of Entomology and Nematology, Ft. Lauderdale Research and Education Center, University of Florida, Ft. Lauderdale, FL, USA
| | - Yung-Hao Ching
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan.
| | - Hou-Feng Li
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan.
- i- Center for Advanced Science and Technology, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
2
|
Chen J, Setia G, Lin LH, Sun Q, Husseneder C. Weight and protozoa number but not bacteria diversity are associated with successful pair formation of dealates in the Formosan subterranean termite, Coptotermes formosanus. PLoS One 2023; 18:e0293813. [PMID: 37956140 PMCID: PMC10642788 DOI: 10.1371/journal.pone.0293813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
New colonies of Formosan subterranean termites are founded by monogamous pairs. During swarming season, alates (winged reproductives) leave their parental colony. After swarming, they drop to the ground, shed their wings, and male and female dealates find suitable nesting sites where they mate and become kings and queens of new colonies. The first generation of offspring is entirely dependent on the nutritional resources of the founder pair consisting of the fat and protein reserves of the dealates and their microbiota, which include the cellulose-digesting protozoa and diverse bacteria. Since termite kings and queens can live for decades, mate for life and colony success is linked to those initial resources, we hypothesized that gut microbiota of founders affect pair formation. To test this hypothesis, we collected pairs found in nest chambers and single male and female dealates from four swarm populations. The association of three factors (pairing status, sex of the dealates and population) with dealate weights, total protozoa, and protozoa Pseudotrichonympha grassii numbers in dealate hindguts was determined. In addition, Illumina 16S rRNA gene sequencing and the QIIME2 pipeline were used to determine the impact of those three factors on gut bacteria diversity of dealates. Here we report that pairing status was significantly affected by weight and total protozoa numbers, but not by P. grassii numbers and bacteria diversity. Weight and total protozoa numbers were higher in paired compared to single dealates. Males contained significantly higher P. grassii numbers and bacteria richness and marginally higher phylogenetic diversity despite having lower weights than females. In conclusion, this study showed that dealates with high body weight and protozoa numbers are more likely to pair and become colony founders, probably because of competitive advantage. The combined nutritional resources provided by body weight and protozoa symbionts of the parents are important for successful colony foundation and development.
Collapse
Affiliation(s)
- Junyan Chen
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, Los Angeles, United States of America
| | - Garima Setia
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, Los Angeles, United States of America
| | - Li-Hsiang Lin
- Department of Experimental Statistics, Louisiana State University Agricultural Center, Baton Rouge, Los Angeles, United States of America
| | - Qian Sun
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, Los Angeles, United States of America
| | - Claudia Husseneder
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, Los Angeles, United States of America
| |
Collapse
|
3
|
Patel JS, Lee SB, Chouvenc T, Su NY. Equivalent Colony Growth of Hybrids of Two Invasive Coptotermes Species Can Threaten Urban Areas. JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:538-545. [PMID: 36749607 DOI: 10.1093/jee/toad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Indexed: 05/30/2023]
Abstract
Coptotermes formosanus Shiraki and C. gestroi (Wasmann) are economically important structural pests in urban areas. Due to anthropogenic activity, both species have been introduced into the United States, with their respective invasive ranges now overlapping in Florida, and the two species have the capability to hybridize. The potential for structural damage from subterranean termite colonies primarily depends on colony size. However, long-term colony growth and wood consumption capabilities of hybrid Coptotermes colonies remain to be investigated, to determine the potential pest status of field-established hybrid colonies. In this study, we investigated long-term colony development over four years to determine if aging hybrid colonies display vigor in terms of colony growth. In addition, we compared wood consumption rate of hybrid colonies to compare their potential impact as structural pests with the two parental species. In aging colonies (four-year-old), both hybrid mating types displayed a colony growth equivalent to C. formosanus. However, the wood consumption rates of four-year-old colonies of the two parental Coptotermes species and their hybrids were similar, indicating equal damaging potential. We also found multiple secondary reproductives in hybrid colonies, even in the presence of primary reproductives, which may favor their potential establishment and spread. Although hybrid colonies or hybrid alates have yet to be detected in the field, our results suggest that such hybrid colonies would be an additional termite threat in the future if they were established in the field.
Collapse
Affiliation(s)
- Jayshree S Patel
- Entomology and Nematology Department, Ft. Lauderdale Research and Education Center, University of Florida, Institute of Food and Agricultural Sciences, 3205 College Avenue, Ft. Lauderdale, FL 33314, USA
| | - Sang-Bin Lee
- Entomology and Nematology Department, Ft. Lauderdale Research and Education Center, University of Florida, Institute of Food and Agricultural Sciences, 3205 College Avenue, Ft. Lauderdale, FL 33314, USA
| | - Thomas Chouvenc
- Entomology and Nematology Department, Ft. Lauderdale Research and Education Center, University of Florida, Institute of Food and Agricultural Sciences, 3205 College Avenue, Ft. Lauderdale, FL 33314, USA
| | - Nan-Yao Su
- Entomology and Nematology Department, Ft. Lauderdale Research and Education Center, University of Florida, Institute of Food and Agricultural Sciences, 3205 College Avenue, Ft. Lauderdale, FL 33314, USA
| |
Collapse
|
4
|
The phylogeography of some soil-feeding termites shaped by the Andes. ORG DIVERS EVOL 2022. [DOI: 10.1007/s13127-022-00594-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Castillo P, Husseneder C, Sun Q. Molecular characterization and expression variation of the odorant receptor co-receptor in the Formosan subterranean termite. PLoS One 2022; 17:e0267841. [PMID: 35482814 PMCID: PMC9049313 DOI: 10.1371/journal.pone.0267841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/14/2022] [Indexed: 11/18/2022] Open
Abstract
Subterranean termites live in underground colonies with a division of labor among castes (i.e., queens and kings, workers, and soldiers). The function of social colonies relies on sophisticated chemical communication. Olfaction, the sense of smell from food, pathogens, and colony members, plays an important role in their social life. Olfactory plasticity in insects can be induced by long- and short-term environmental perturbations, allowing adaptive responses to the chemical environment according to their physiological and behavioral state. However, there is a paucity of information on the molecular basis of olfaction in termites. In this study, we identified an ortholog encoding the odorant receptor co-receptor (Orco) in the Formosan subterranean termite, Coptotermes formosanus, and examined its expression variation across developmental stages and in response to social conditions. We found that C. formosanus Orco showed conserved sequence and structure compared with other insects. Spatial and temporal analyses showed that the Orco gene was primarily expressed in the antennae, and it was expressed in eggs and all postembryonic developmental stages. The antennal expression of Orco was upregulated in alates (winged reproductives) compared with workers and soldiers. Further, the expression of Orco decreased in workers after starvation for seven days, but it was not affected by the absence of soldiers or different group sizes. Our study reveals the molecular characteristics of Orco in a termite, and the results suggest a link between olfactory sensitivity and nutritional status. Further studies are warranted to better understand the role of Orco in olfactory plasticity and behavioral response.
Collapse
Affiliation(s)
- Paula Castillo
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, United States of America
| | - Claudia Husseneder
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, United States of America
| | - Qian Sun
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
6
|
Mizumoto N, Lee SB, Valentini G, Chouvenc T, Pratt SC. Coordination of movement via complementary interactions of leaders and followers in termite mating pairs. Proc Biol Sci 2021; 288:20210998. [PMID: 34255998 PMCID: PMC8277464 DOI: 10.1098/rspb.2021.0998] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/15/2021] [Indexed: 11/12/2022] Open
Abstract
In collective animal motion, coordination is often achieved by feedback between leaders and followers. For stable coordination, a leader's signals and a follower's responses are hypothesized to be attuned to each other. However, their roles are difficult to disentangle in species with highly coordinated movements, hiding potential diversity of behavioural mechanisms for collective behaviour. Here, we show that two Coptotermes termite species achieve a similar level of coordination via distinct sets of complementary leader-follower interactions. Even though C. gestroi females produce less pheromone than C. formosanus, tandem runs of both species were stable. Heterospecific pairs with C. gestroi males were also stable, but not those with C. formosanus males. We attributed this to the males' adaptation to the conspecific females; C. gestroi males have a unique capacity to follow females with small amounts of pheromone, while C. formosanus males reject C. gestroi females as unsuitable but are competitive over females with large amounts of pheromone. An information-theoretic analysis supported this conclusion by detecting information flow from female to male only in stable tandems. Our study highlights cryptic interspecific variation in movement coordination, a source of novelty for the evolution of social interactions.
Collapse
Affiliation(s)
- Nobuaki Mizumoto
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- Okinawa Institute of Science & Technology Graduate University, Onna-son, Okinawa 940-0495, Japan
| | - Sang-Bin Lee
- Entomology and Nematology Department, Ft. Lauderdale Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Ft. Lauderdale, FL 33314, USA
| | | | - Thomas Chouvenc
- Entomology and Nematology Department, Ft. Lauderdale Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Ft. Lauderdale, FL 33314, USA
| | - Stephen C. Pratt
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
7
|
Castillo P, Le N, Sun Q. Comparative Antennal Morphometry and Sensilla Organization in the Reproductive and Non-Reproductive Castes of the Formosan Subterranean Termite. INSECTS 2021; 12:576. [PMID: 34202744 PMCID: PMC8307099 DOI: 10.3390/insects12070576] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/02/2022]
Abstract
Antennae are the primary sensory organs in insects, where a variety of sensilla are distributed for the perception of the chemical environment. In eusocial insects, colony function is maintained by a division of labor between reproductive and non-reproductive castes, and chemosensation is essential for regulating their specialized social activities. Several social species in Hymenoptera display caste-specific characteristics in antennal morphology and diversity of sensilla, reflecting their differential tasks. In termites, however, little is known about how the division of labor is associated with chemosensory morphology among castes. Using light and scanning electron microscopy, we performed antennal morphometry and characterized the organization of sensilla in reproductive (female and male alates) and non-reproductive (worker and soldier) castes in the Formosan subterranean termite, Coptotermes formosanus Shiraki. Here, we show that the antennal sensilla in alates are twice as abundant as in workers and soldiers, along with the greater number of antennal segments and antennal length in alates. However, all castes exhibit the same types of antennal sensilla, including basiconicum, campaniformium, capitulum, chaeticum I, chaeticum II, chaeticum III, marginal, trichodeum I, and trichodeum I. The quantitative composition of sensilla diverges between reproductive and non-reproductive castes, but not between female and male alates or between worker and soldier castes. The sensilla display spatial-specific distribution, with basiconicum exclusively and capitulum predominantly found on the ventral side of antennae. In addition, the abundance of chemosensilla increases toward the distal end of antennae in each caste. This research provides morphological signatures of chemosensation and their implications for the division of labor, and suggests future neurophysiological and molecular studies to address the mechanisms of chemical communication in termites.
Collapse
Affiliation(s)
| | | | - Qian Sun
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (P.C.); (N.L.)
| |
Collapse
|
8
|
Bridgehead effect and multiple introductions shape the global invasion history of a termite. Commun Biol 2021; 4:196. [PMID: 33580197 PMCID: PMC7881189 DOI: 10.1038/s42003-021-01725-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 01/19/2021] [Indexed: 01/30/2023] Open
Abstract
Native to eastern Asia, the Formosan subterranean termite Coptotermes formosanus (Shiraki) is recognized as one of the 100 worst invasive pests in the world, with established populations in Japan, Hawaii and the southeastern United States. Despite its importance, the native source(s) of C. formosanus introductions and their invasive pathway out of Asia remain elusive. Using ~22,000 SNPs, we retraced the invasion history of this species through approximate Bayesian computation and assessed the consequences of the invasion on its genetic patterns and demography. We show a complex invasion history, where an initial introduction to Hawaii resulted from two distinct introduction events from eastern Asia and the Hong Kong region. The admixed Hawaiian population subsequently served as the source, through a bridgehead, for one introduction to the southeastern US. A separate introduction event from southcentral China subsequently occurred in Florida showing admixture with the first introduction. Overall, these findings further reinforce the pivotal role of bridgeheads in shaping species distributions in the Anthropocene and illustrate that the global distribution of C. formosanus has been shaped by multiple introductions out of China, which may have prevented and possibly reversed the loss of genetic diversity within its invasive range.
Collapse
|
9
|
Mizumoto N, Rizo A, Pratt SC, Chouvenc T. Termite males enhance mating encounters by changing speed according to density. J Anim Ecol 2020; 89:2542-2552. [PMID: 32799344 DOI: 10.1111/1365-2656.13320] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/09/2020] [Indexed: 11/30/2022]
Abstract
Search theory predicts that animals evolve efficient movement patterns to enhance encounter rates with specific targets. The optimal movements vary with the surrounding environments, which may explain the observation that animals often switch their movement patterns depending on conditions. However, the effectiveness of behavioural change during search is rarely evaluated because it is difficult to examine the actual encounter dynamics. Here we studied how partner-seeking termites update their search strategies depending on the local densities of potential mates. After a dispersal flight, termites drop their wings and walk to search for a mate; when a female and a male meet, they form a female-led tandem pair and search for a favourable nesting site. If a pair is separated, they have two search options-reunite with their stray partner, or seek a new partner. We hypothesized that the density of individuals affects separation-reunion dynamics and thus the optimal search strategy. We observed the searching process across different densities and found that termite pairs were often separated but obtained a new partner quickly at high mate density. After separation, while females consistently slowed down, males increased their speed according to the density. Under high mate density, separated males obtained a partner earlier than females, who do not change movement with density. Our data-based simulations confirmed that the observed behavioural change by males contributes to enhancing encounters. Males at very low mate densities did best to move slowly and thereby reduce the risk of missing their stray partner, who is the only available mate. On the other hand, males that experienced high mate densities did better in mating encounters by moving fast because the risk of isolation is low, and they must compete with other males to find a partner. These results demonstrate that termite males adaptively update their search strategy depending on conditions. Understanding the encounter dynamics experienced by animals is key to connecting the empirical work to the idealized search processes of theoretical studies.
Collapse
Affiliation(s)
- Nobuaki Mizumoto
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.,Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Arturo Rizo
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Stephen C Pratt
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Thomas Chouvenc
- Entomology and Nematology Department, Ft. Lauderdale Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Ft. Lauderdale, FL, USA
| |
Collapse
|
10
|
Jasso-Selles DE, De Martini F, Velenovsky JF, Mee ED, Montoya SJ, Hileman JT, Garcia MD, Su NY, Chouvenc T, Gile GH. The Complete Protist Symbiont Communities of Coptotermes formosanus and Coptotermes gestroi: Morphological and Molecular Characterization of Five New Species. J Eukaryot Microbiol 2020; 67:626-641. [PMID: 32603489 DOI: 10.1111/jeu.12815] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/13/2020] [Indexed: 12/18/2022]
Abstract
Coptotermes formosanus Shiraki and Coptotermes gestroi (Wasmann) (Blattoidea: Rhinotermitidae) are invasive subterranean termite pest species with a major global economic impact. However, the descriptions of the mutualistic protist communities harbored in their respective hindguts remain fragmentary. The C. formosanus hindgut has long been considered to harbor three protist species, Pseudotrichonympha grassii (Trichonymphida), Holomastigotoides hartmanni, and Cononympha (Spirotrichonympha) leidyi (Spirotrichonymphida), but molecular data have suggested that the diversity may be higher. Meanwhile, the C. gestroi community remains undescribed except for Pseudotrichonympha leei. To complete the characterization of these communities, hindguts of workers from both termite species were investigated using single-cell PCR, microscopy, cell counts, and 18S rRNA amplicon sequencing. The two hosts were found to harbor intriguingly parallel protist communities, each consisting of one Pseudotrichonympha species, two Holomastigotoides species, and two Cononympha species. All protist species were unique to their respective hosts, which last shared a common ancestor ~18 MYA. The relative abundances of protist species in each hindgut differed remarkably between cell count data and 18S rRNA profiles, calling for caution in interpreting species abundances from amplicon data. This study will enable future research in C. formosanus and C. gestroi hybrids, which provide a unique opportunity to study protist community inheritance, compatibility, and potential contribution to hybrid vigor.
Collapse
Affiliation(s)
- Daniel E Jasso-Selles
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, Arizona, 85487, USA
| | - Francesca De Martini
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, Arizona, 85487, USA
| | - Joseph F Velenovsky
- Entomology and Nematology Department, Ft Lauderdale Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, 3205 College Avenue, Davie, Florida, 33314, USA
| | - Evan D Mee
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, Arizona, 85487, USA
| | - Samantha J Montoya
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, Arizona, 85487, USA
| | - Jonathon T Hileman
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, Arizona, 85487, USA
| | - Mikaela D Garcia
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, Arizona, 85487, USA
| | - Nan-Yao Su
- Entomology and Nematology Department, Ft Lauderdale Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, 3205 College Avenue, Davie, Florida, 33314, USA
| | - Thomas Chouvenc
- Entomology and Nematology Department, Ft Lauderdale Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, 3205 College Avenue, Davie, Florida, 33314, USA
| | - Gillian H Gile
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, Arizona, 85487, USA
| |
Collapse
|