1
|
Dam MI, Ding BJ, Svensson GP, Wang HL, Melo DJ, Lassance JM, Zarbin PH, Löfstedt C. Sex pheromone biosynthesis in the sugarcane borer Diatraea saccharalis: paving the way for biotechnological production. PEST MANAGEMENT SCIENCE 2024; 80:996-1007. [PMID: 37830147 DOI: 10.1002/ps.7830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/19/2023] [Accepted: 10/13/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND The sugarcane borer Diatraea saccharalis (Lepidoptera) is a key pest on sugarcane and other grasses in the Americas. Biological control as well as insecticide treatments are used for pest management, but economic losses are still significant. The use of female sex pheromones for mating disruption or mass trapping in pest management could be established for this species, provided that economical production of pheromone is available. RESULTS Combining in vivo labelling studies, differential expression analysis of transcriptome data and functional characterisation of insect genes in a yeast expression system, we reveal the biosynthetic pathway and identify the desaturase and reductase enzymes involved in the biosynthesis of the main pheromone component (9Z,11E)-hexadecadienal, and minor components hexadecanal, (9Z)-hexadecenal and (11Z)-hexadecenal. We next demonstrate heterologous production of the corresponding alcohols of the pheromone components, by expressing multiple steps of the biosynthetic pathway in yeast. CONCLUSION Elucidation of the genetic basis of sex pheromone biosynthesis in D. saccharalis, and heterologous expression in yeast, paves the way for biotechnological production of the pheromone compounds needed for pheromone-based pest management of this species. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Bao-Jian Ding
- Department of Biology, Lund University, Lund, Sweden
| | | | - Hong-Lei Wang
- Department of Biology, Lund University, Lund, Sweden
| | - Douglas J Melo
- Department of Biology, Lund University, Lund, Sweden
- Departamento de Química, Universidade Federal do Paraná, Curitiba, Brazil
| | - Jean-Marc Lassance
- Département de gestion vétérinaire des Ressources Animales (DRA), University of Liege, Bât. B36 GIGA-Neurosciences, Quartier Hôpital, Liège 1, Belgium
| | - Paulo Hg Zarbin
- Departamento de Química, Universidade Federal do Paraná, Curitiba, Brazil
| | | |
Collapse
|
2
|
Bhoria S, Saini P, Chaudhary D, Jaiwal R, Jaiwal PK. Engineering Camelina sativa Seeds as a Green Bioreactor for the Production of Affordable Human Pro-insulin that Demonstrates Anti-diabetic Efficacy in Rats. Mol Biotechnol 2024:10.1007/s12033-024-01068-y. [PMID: 38368589 DOI: 10.1007/s12033-024-01068-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/08/2024] [Indexed: 02/19/2024]
Abstract
The current production of recombinant insulin via fermenter-based platforms (Escherichia coli and yeast) could not fulfill its fast-growing commercial demands, thus leading to a great interest in its sustainable large-scale production at low cost using a plant-based system. In the present study, Agrobacterium tumefaciens-mediated nuclear stable genetic transformation of an industrial oilseed crop, Camelina sativa, to express pro-insulin (with three furin endoprotease cleavage sites) fused with cholera toxin B subunit (CTB) in their seeds was successfully achieved for the first time. The bar gene was used as a selectable marker for selecting transformants and producing herbicide-resistant camelina plants. The transformation process involved the infiltration of camelina inflorescences (at flower buds with partially opened flowers) with A. tumefaciens and harvesting the seeds (T0) at maturity. The T0 seeds were raised into the putative T1 plants sprayed with Basta herbicide (0.03%, v/v), and the survived green transformed plants tested positive for pro-insulin and bar genes. A transformation frequency of 6.96% was obtained. The integration and copy number of the pro-insulin transgene and its expression at RNA and protein levels were confirmed in T1 plants using Southern hybridization, semi-quantitative Reverse Transcriptase-Polymerase Chain Reaction (sqPCR), and quantitative real-time Time PCR (qPCR) and western blot analysis, respectively. Enzyme-linked immunosorbent Assay (ELISA) quantified the amount of expressed pro-insulin protein, and its anti-diabetic efficacy was validated in diabetic rats on oral feeding. Transgenic plants integrated the pro-insulin gene into their genomes and produced a maximum of 197 µg/100 mg of pro-insulin (0.804% of TSP) that had anti-diabetic efficacy in rats.
Collapse
Affiliation(s)
- Sapna Bhoria
- Centre for Biotechnology, M. D. University, Rohtak, 124001, India
| | - Priyanka Saini
- Department of Zoology, M. D. University, Rohtak, 124001, India
| | | | - Ranjana Jaiwal
- Department of Zoology, M. D. University, Rohtak, 124001, India
| | - Pawan K Jaiwal
- Centre for Biotechnology, M. D. University, Rohtak, 124001, India.
| |
Collapse
|
3
|
Kallam K, Moreno‐Giménez E, Mateos‐Fernández R, Tansley C, Gianoglio S, Orzaez D, Patron N. Tunable control of insect pheromone biosynthesis in Nicotiana benthamiana. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1440-1453. [PMID: 37032497 PMCID: PMC10281601 DOI: 10.1111/pbi.14048] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Previous work has demonstrated that plants can be used as production platforms for molecules used in health, medicine, and agriculture. Production has been exemplified in both stable transgenic plants and using transient expression strategies. In particular, species of Nicotiana have been engineered to produce a range of useful molecules, including insect sex pheromones, which are valued for species-specific control of agricultural pests. To date, most studies have relied on strong constitutive expression of all pathway genes. However, work in microbes has demonstrated that yields can be improved by controlling and balancing gene expression. Synthetic regulatory elements that provide control over the timing and levels of gene expression are therefore useful for maximizing yields from heterologous biosynthetic pathways. In this study, we demonstrate the use of pathway engineering and synthetic genetic elements for controlling the timing and levels of production of Lepidopteran sex pheromones in Nicotiana benthamiana. We demonstrate that copper can be used as a low-cost molecule for tightly regulated inducible expression. Further, we show how construct architecture influences relative gene expression and, consequently, product yields in multigene constructs. We compare a number of synthetic orthogonal regulatory elements and demonstrate maximal yields from constructs in which expression is mediated by dCas9-based synthetic transcriptional activators. The approaches demonstrated here provide new insights into the heterologous reconstruction of metabolic pathways in plants.
Collapse
Affiliation(s)
- Kalyani Kallam
- Engineering BiologyEarlham Institute, Norwich Research ParkNorwich, NorfolkUK
| | | | | | - Connor Tansley
- Engineering BiologyEarlham Institute, Norwich Research ParkNorwich, NorfolkUK
| | - Silvia Gianoglio
- Institute for Plant Molecular and Cell Biology (IBMCP), UPV‐CSICValenciaSpain
| | - Diego Orzaez
- Institute for Plant Molecular and Cell Biology (IBMCP), UPV‐CSICValenciaSpain
| | - Nicola Patron
- Engineering BiologyEarlham Institute, Norwich Research ParkNorwich, NorfolkUK
| |
Collapse
|
4
|
Juteršek M, Petek M, Ramšak Ž, Moreno-Giménez E, Gianoglio S, Mateos-Fernández R, Orzáez D, Gruden K, Baebler Š. Transcriptional deregulation of stress-growth balance in Nicotiana benthamiana biofactories producing insect sex pheromones. FRONTIERS IN PLANT SCIENCE 2022; 13:941338. [PMID: 36388501 PMCID: PMC9645294 DOI: 10.3389/fpls.2022.941338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Plant biofactories are a promising platform for sustainable production of high-value compounds, among which are insect sex pheromones, a green alternative to conventional insecticides in agriculture. Recently, we have constructed transgenic Nicotiana benthamiana plants ("Sexy Plants", SxP) that successfully produce a blend of moth (Lepidoptera) sex pheromone compounds (Z)-11-hexadecen-1-ol and (Z)-11-hexadecenyl acetate. However, efficient biosynthesis of sex pheromones resulted in growth and developmental penalty, diminishing the potential for commercial use of SxP in biomanufacturing. To gain insight into the underlying molecular responses, we analysed the whole-genome transcriptome and evaluated it in relation to growth and pheromone production in low- and high-producing transgenic plants of v1.0 and v1.2 SxP lines. In our study, high-producing SxPv1.2 plants accumulated the highest amounts of pheromones but still maintained better growth compared to v1.0 high producers. For an in-depth biological interpretation of the transcriptomic data, we have prepared a comprehensive functional N. benthamiana genome annotation as well as gene translations to Arabidopsis thaliana, enabling functional information transfer by using Arabidopsis knowledge networks. Differential gene expression analysis, contrasting pheromone producers to wild-type plants, revealed that while only a few genes were differentially regulated in low-producing plants, high-producing plants exhibited vast transcriptional reprogramming. They showed signs of stress-like response, manifested as downregulation of photosynthesis-related genes and significant differences in expression of hormonal signalling and secondary metabolism-related genes, the latter presumably leading to previously reported volatilome changes. Further network analyses confirmed stress-like response with activation of jasmonic acid and downregulation of gibberellic acid signalling, illuminating the possibility that the observed growth penalty was not solely a consequence of a higher metabolic burden imposed upon constitutive expression of a heterologous biosynthetic pathway, but rather the result of signalling pathway perturbation. Our work presents an example of comprehensive transcriptomic analyses of disadvantageous stress signalling in N. benthamiana biofactory that could be applied to other bioproduction systems.
Collapse
Affiliation(s)
- Mojca Juteršek
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Marko Petek
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Živa Ramšak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Elena Moreno-Giménez
- Institute for Plant Molecular and Cell Biology (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia (UPV), Valencia, Spain
| | - Silvia Gianoglio
- Institute for Plant Molecular and Cell Biology (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia (UPV), Valencia, Spain
| | - Rubén Mateos-Fernández
- Institute for Plant Molecular and Cell Biology (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia (UPV), Valencia, Spain
| | - Diego Orzáez
- Institute for Plant Molecular and Cell Biology (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia (UPV), Valencia, Spain
| | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Špela Baebler
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|
5
|
Petkevicius K, Wenning L, Kildegaard KR, Sinkwitz C, Smedegaard R, Holkenbrink C, Borodina I. Biosynthesis of insect sex pheromone precursors via engineered β-oxidation in yeast. FEMS Yeast Res 2022; 22:foac041. [PMID: 35948277 PMCID: PMC9435373 DOI: 10.1093/femsyr/foac041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/13/2022] [Accepted: 08/07/2022] [Indexed: 11/26/2022] Open
Abstract
Mating disruption with insect sex pheromones is an attractive and environmentally friendly technique for pest management. Several Lepidoptera sex pheromones have been produced in yeast, where biosynthesis could be accomplished by the expression of fatty acyl-CoA desaturases and fatty acyl-CoA reductases. In this study, we aimed to develop yeast Yarrowia lipolytica cell factories for producing Lepidoptera pheromones which biosynthesis additionally requires β-oxidation, such as (Z)-7-dodecenol (Z7-12:OH), (Z)-9-dodecenol (Z9-12:OH), and (Z)-7-tetradecenol (Z7-14:OH). We expressed fatty acyl-CoA desaturases from Drosophila melanogaster (Dmd9) or Lobesia botrana (Lbo_PPTQ) and fatty acyl-CoA reductase from Helicoverpa armigera (HarFAR) in combinations with 11 peroxisomal oxidases of different origins. Yeast cultivations were performed with supplementation of methyl myristate (14:Me). The oxidase Lbo_31670 from L. botrana provided the highest titers of (Z)-7-dodecenoate, (Z)-9-dodecenoate, and (Z)-7-tetradecenoate. However, no chain-shortened fatty alcohols were produced. The mutation of fatty acid synthase (Fas2pI1220F) to increase myristate production did not lead to targeted fatty alcohol production. The problem was solved by directing the reductase into peroxisomes, where the strain with Dmd9 produced 0.10 ± 0.02 mg/l of Z7-12:OH and 0.48 ± 0.03 mg/l of Z7-14:OH, while the strain with Lbo_PPTQ produced 0.21 ± 0.03 mg/l of Z9-12:OH and 0.40 ± 0.07 mg/l of Z7-14:OH. In summary, the engineering of β-oxidation in Y. lipolytica allowed expanding the portfolio of microbially produced insect sex pheromones.
Collapse
Affiliation(s)
- Karolis Petkevicius
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs. Lyngby, Denmark
- BioPhero ApS, Lersø Parkallé 42-44, 4th, 2100 Copenhagen Ø, Denmark
| | - Leonie Wenning
- BioPhero ApS, Lersø Parkallé 42-44, 4th, 2100 Copenhagen Ø, Denmark
| | | | | | - Rune Smedegaard
- BioPhero ApS, Lersø Parkallé 42-44, 4th, 2100 Copenhagen Ø, Denmark
| | | | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs. Lyngby, Denmark
- BioPhero ApS, Lersø Parkallé 42-44, 4th, 2100 Copenhagen Ø, Denmark
| |
Collapse
|
6
|
Demski K, Ding BJ, Wang HL, Tran TNT, Durrett TP, Lager I, Löfstedt C, Hofvander P. Manufacturing specialized wax esters in plants. Metab Eng 2022; 72:391-402. [PMID: 35598886 DOI: 10.1016/j.ymben.2022.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/07/2022] [Accepted: 05/15/2022] [Indexed: 01/11/2023]
Abstract
Biologically produced wax esters can fulfil different industrial purposes. These functionalities almost drove the sperm whale to extinction from hunting. After the ban on hunting, there is a niche in the global market for biolubricants with properties similar to spermaceti. Wax esters can also serve as a mechanism for producing insect sex pheromone fatty alcohols. Pheromone-based mating disruption strategies are in high demand to replace the toxic pesticides in agriculture and manage insect plagues threatening our food and fiber reserves. In this study we set out to investigate the possibilities of in planta assembly of wax esters, for specific applications, through transient expression of various mix-and-match combinations of genes in Nicotiana benthamiana leaves. Our synthetic biology designs were outlined in order to pivot plant lipid metabolism into producing wax esters with targeted fatty acyl and fatty alcohols moieties. Through this approach we managed to obtain industrially important spermaceti-like wax esters enriched in medium-chain fatty acyl and/or fatty alcohol moieties of wax esters. Via employment of plant codon-optimized moth acyl-CoA desaturases we also managed to capture unusual, unsaturated fatty alcohol and fatty acyl moieties, structurally similar to moth pheromone compounds, in plant-accumulated wax esters. Comparison between outcomes of different experimental designs identified targets for stable transformation to accumulate specialized wax esters and helped us to recognize possible bottlenecks of such accumulation.
Collapse
Affiliation(s)
- Kamil Demski
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Box 190, 23422, Lomma, Sweden.
| | - Bao-Jian Ding
- Department of Biology, Lund University, 22362, Lund, Sweden
| | - Hong-Lei Wang
- Department of Biology, Lund University, 22362, Lund, Sweden
| | - Tam N T Tran
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Timothy P Durrett
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Ida Lager
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Box 190, 23422, Lomma, Sweden
| | | | - Per Hofvander
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Box 190, 23422, Lomma, Sweden.
| |
Collapse
|
7
|
Xia YH, Ding BJ, Dong SL, Wang HL, Hofvander P, Löfstedt C. Release of moth pheromone compounds from Nicotiana benthamiana upon transient expression of heterologous biosynthetic genes. BMC Biol 2022; 20:80. [PMID: 35361182 PMCID: PMC8969271 DOI: 10.1186/s12915-022-01281-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/12/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Using genetically modified plants as natural dispensers of insect pheromones may eventually become part of a novel strategy for integrated pest management. RESULTS In the present study, we first characterized essential functional genes for sex pheromone biosynthesis in the rice stem borer Chilo suppressalis (Walker) by heterologous expression in Saccharomyces cerevisiae and Nicotiana benthamiana, including two desaturase genes CsupYPAQ and CsupKPSE and a reductase gene CsupFAR2. Subsequently, we co-expressed CsupYPAQ and CsupFAR2 together with the previously characterized moth desaturase Atr∆11 in N. benthamiana. This resulted in the production of (Z)-11-hexadecenol together with (Z)-11-hexadecenal, the major pheromone component of C. suppressalis. Both compounds were collected from the transformed N. benthamiana headspace volatiles using solid-phase microextraction. We finally added the expression of a yeast acetyltransferase gene ATF1 and could then confirm also (Z)-11-hexadecenyl acetate release from the plant. CONCLUSIONS Our results pave the way for stable transformation of plants to be used as biological pheromone sources in different pest control strategies.
Collapse
Affiliation(s)
- Yi-Han Xia
- Department of Biology, Lund University, Sölvegatan 37, SE-22362, Lund, Sweden
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 4, SE-41296, Gothenburg, Sweden
| | - Bao-Jian Ding
- Department of Biology, Lund University, Sölvegatan 37, SE-22362, Lund, Sweden
| | - Shuang-Lin Dong
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, CN-210095, China
| | - Hong-Lei Wang
- Department of Biology, Lund University, Sölvegatan 37, SE-22362, Lund, Sweden
| | - Per Hofvander
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 101, SE-23053, Alnarp, Sweden
| | - Christer Löfstedt
- Department of Biology, Lund University, Sölvegatan 37, SE-22362, Lund, Sweden.
| |
Collapse
|
8
|
Ontiveros-Cisneros A, Moss O, Van Moerkercke A, Van Aken O. Evaluation of Antibiotic-Based Selection Methods for Camelina sativa Stable Transformants. Cells 2022; 11:cells11071068. [PMID: 35406632 PMCID: PMC8997383 DOI: 10.3390/cells11071068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/10/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022] Open
Abstract
Camelina sativa (Camelina) is an oilseed crop that in recent years has gained importance due to its closeness to the plant model organism Arabidopsis thaliana (Arabidopsis), its low agronomical requirements, and the ability to grow under temperate conditions. To explore all the agronomical and biotechnological possibilities of this crop, it is important to evaluate the usability of the molecular procedures currently available for plants. One of the main tools for plant genetic modification and genetic studies is stable plant transformation. In the case of Arabidopsis, as well as Camelina, floral dipping is the easiest and most used method, which is followed by a selection for stable transformants. Commonly used selection methods for Camelina involve Discosoma sp. red protein (DsRed) fluorescence screening. However, many widely used plant transformation vector systems, for example those used in Arabidopsis and grasses, rely on antibiotic resistance selection. In this study, we evaluated the usability of different antibiotics including kanamycin (Kan), hygromycin (Hyg) and BASTA, and propose optimised protocols for selecting T1 and subsequent generation Camelina transformants, as well as crossing of Camelina lines expressing different transgenes. Finally, we also showed that overexpression of genes encoding enzymes from the seco-iridoid pathway of Catharanthus roseus using Hyg or BASTA-based expression constructs could be successfully achieved in Camelina, demonstrating the potential of these methods for metabolic engineering. Overall, in this study we show an efficient way to sterilize seeds, handle and perform selection of Camelina for use with transformation vectors designed for Arabidopsis thaliana. We also demonstrate a successful method to cross Camelina sativa and provide qRT-PCR results to prove its effectiveness.
Collapse
|
9
|
Schulz S, Millar JG, Felton GW. Special Issues in Honor of Professor Dr. Dr. hc mult. Wittko Francke, 28 November 1940 - 27 December 2020. J Chem Ecol 2021; 47:927-929. [PMID: 34792682 DOI: 10.1007/s10886-021-01335-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Stefan Schulz
- Institute of Organic Chemistry, Technische Universitat Braunschweig, Braunschweig, Germany
| | - Jocelyn G Millar
- Departments of Entomology and Chemistry, University of California, Riverside, CA, 92521, USA
| | - Gary W Felton
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|