1
|
Liu C, Bao L, Yang M, Zhang S, Zhou M, Tang B, Wang B, Liu Y, Zhang ZL, Zhang B, Pang DW. Surface Sensitive Photoluminescence of Carbon Nanodots: Coupling between the Carbonyl Group and π-Electron System. J Phys Chem Lett 2019; 10:3621-3629. [PMID: 31199162 DOI: 10.1021/acs.jpclett.9b01339] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The functional groups and π-electron system of carbon dots (C-dots) were carefully controlled by several innovative chemical methods, without any changes in size, to unravel the relationship between the surface structure and photoluminescence (PL). The results of experiments and theoretical calculations reveal that the PL of C-dots is related to the surface state. The energy gap is determined by the coupling of the π-electron system and carbonyl group, and the quantum yield (QY) is dependent on the carbonyl group. The carbonyl group is the main factor increasing the ratio of nonradiation to radiation recombination, thereby leading to the low QY of C-dots. This work provides a strategy for effectively tuning the structure of C-dots, giving rise to the tunable PL emission wavelength and highly desirable QY, which enables us to further unravel the PL mechanism.
Collapse
Affiliation(s)
- Cui Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology , Wuhan University , Wuhan 430072 , P. R. China
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Centre for Intelligent Sensing Technology, College of Optoelectronic Engineering , Chongqing University , Chongqing 400044 , P. R. China
| | - Lei Bao
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology , Wuhan University , Wuhan 430072 , P. R. China
| | - Mengli Yang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology , Wuhan University , Wuhan 430072 , P. R. China
| | - Song Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics , Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Miaomiao Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics , Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Bo Tang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology , Wuhan University , Wuhan 430072 , P. R. China
| | - Baoshan Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology , Wuhan University , Wuhan 430072 , P. R. China
| | - Yufei Liu
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Centre for Intelligent Sensing Technology, College of Optoelectronic Engineering , Chongqing University , Chongqing 400044 , P. R. China
| | - Zhi-Ling Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology , Wuhan University , Wuhan 430072 , P. R. China
| | - Bing Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics , Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Dai-Wen Pang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology , Wuhan University , Wuhan 430072 , P. R. China
| |
Collapse
|
2
|
Recent advances in optical properties and applications of colloidal quantum dots under two-photon excitation. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.02.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
3
|
Angeloni I, Raja W, Polovitsyn A, De Donato F, Zaccaria RP, Moreels I. Band-edge oscillator strength of colloidal CdSe/CdS dot-in-rods: comparison of absorption and time-resolved fluorescence spectroscopy. NANOSCALE 2017; 9:4730-4738. [PMID: 28327734 DOI: 10.1039/c6nr09021d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We studied the oscillator strength fgap of the band gap transition in heteronanocrystals (hNCs) with a spherical CdSe core embedded in an elongated CdS shell. A comparison with fgap of core-only CdSe NCs confirmed a reduction of the electron-hole overlap in hNCs with a band gap larger than 2.05 eV or smaller than 1.98 eV. However, the decrease in fgap is limited to about 50% when compared to CdSe NCs, suggesting that residual confinement still localizes the electron near the core. We correlated fgap with the radiative lifetime obtained from multiexponential photoluminescence (PL) decay traces. The different components were attributed to radiative decay, or deep and shallow carrier trapping, respectively, using the PL quantum efficiency (QE) as a guideline. Our data highlight the challenges associated when extracting the radiative decay, and demonstrate the added value of absorption spectroscopy to obtain the band-edge oscillator strength and the associated radiative recombination rate in colloidal hNCs.
Collapse
Affiliation(s)
- I Angeloni
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy. and Dipartimento di Chimica e Chimica Industriale, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - W Raja
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy. and Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - A Polovitsyn
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy. and Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - F De Donato
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy.
| | | | - I Moreels
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy.
| |
Collapse
|
4
|
Liu C, Bao L, Tang B, Zhao JY, Zhang ZL, Xiong LH, Hu J, Wu LL, Pang DW. Fluorescence-Converging Carbon Nanodots-Hybridized Silica Nanosphere. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:4702-4706. [PMID: 26972488 DOI: 10.1002/smll.201503958] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/05/2016] [Indexed: 06/05/2023]
Abstract
Ultrabright carbon nanodots-hybridized silica nanospheres (CSNs) are synthesized through the Stöber process of silane functionalized C-dots. The fluorescence of carbon nanodots is converged intensely. A CSN is about 3800 times brighter than a single-carbon nanodot. Along with their high brightness and low cytotoxicity, CSNs also indicate their potential application in cellular labeling.
Collapse
Affiliation(s)
- Cui Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies and Wuhan Institute of Biotechnology, Wuhan University, Wuhan, 430072, P. R. China
| | - Lei Bao
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies and Wuhan Institute of Biotechnology, Wuhan University, Wuhan, 430072, P. R. China
| | - Bo Tang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies and Wuhan Institute of Biotechnology, Wuhan University, Wuhan, 430072, P. R. China
| | - Jing-Ya Zhao
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies and Wuhan Institute of Biotechnology, Wuhan University, Wuhan, 430072, P. R. China
| | - Zhi-Ling Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies and Wuhan Institute of Biotechnology, Wuhan University, Wuhan, 430072, P. R. China
| | - Ling-Hong Xiong
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies and Wuhan Institute of Biotechnology, Wuhan University, Wuhan, 430072, P. R. China
| | - Jiao Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies and Wuhan Institute of Biotechnology, Wuhan University, Wuhan, 430072, P. R. China
| | - Ling-Ling Wu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies and Wuhan Institute of Biotechnology, Wuhan University, Wuhan, 430072, P. R. China
| | - Dai-Wen Pang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies and Wuhan Institute of Biotechnology, Wuhan University, Wuhan, 430072, P. R. China.
| |
Collapse
|
5
|
Pazhanivel T, Devarajan VP, Bharathi G, Senthil K, Ganapathy V, Yong K, Nataraj D. Systematic investigation of the structure and photophysical properties of CdSe, CdSe/ZnS QDs and their hybrid with β-carotene. RSC Adv 2013. [DOI: 10.1039/c3ra41482e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
6
|
Suchánek J, Lang K, Novakova V, Zimcik P, Zelinger Z, Kubát P. Photophysical properties of CdSe quantum dot self-assemblies with zinc phthalocyanines and azaphthalocyanines. Photochem Photobiol Sci 2013; 12:743-50. [DOI: 10.1039/c2pp25348h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Liang S, Liu XL, Yang YZ, Wang YL, Wang JH, Yang ZJ, Wang LB, Jia SF, Yu XF, Zhou L, Wang JB, Zeng J, Wang QQ, Zhang Z. Symmetric and asymmetric Au-AgCdSe hybrid nanorods. NANO LETTERS 2012; 12:5281-5286. [PMID: 22947073 DOI: 10.1021/nl3025505] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This paper describes a facile method for synthesis of Au-AgCdSe hybrid nanorods with controlled morphologies and spatial distributions. The synthesis involved deposition of Ag tips at the ends of Au nanorod seeds, followed by selenization of the Ag tips and overgrowth of CdSe on these sites. By simply manipulating the pH value of the system, the AgCdSe could selectively grow at one end, at both the ends or on the side surface of a Au nanorod, generating a mike-like, dumbbell-like, or toothbrush-like hybrid nanorod, respectively. These three types of Au-AgCdSe hybrid nanorods displayed distinct localized surface plasmon resonance and photoluminescence properties, demonstrating an effective pathway for maneuvering the optical properties of nanocrystals.
Collapse
Affiliation(s)
- Shan Liang
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Wuhan University, Wuhan 430072, Hubei, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Gómez-Campos FM, Califano M. Hole surface trapping in CdSe nanocrystals: dynamics, rate fluctuations, and implications for blinking. NANO LETTERS 2012; 12:4508-4517. [PMID: 22849432 DOI: 10.1021/nl3016279] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Carrier trapping is one of the main sources of performance degradation in nanocrystal-based devices. Yet the dynamics of this process is still unclear. We present a comprehensive investigation into the efficiency of hole transfer to a variety of trap sites located on the surface of the core or the shell or at the core/shell interface in CdSe nanocrystals with both organic and inorganic passivation, using the atomistic semiempirical pseudopotential approach. We separate the contribution of coupling strength and energetics in different systems and trap configurations, obtaining useful general guidelines for trapping rate engineering. We find that trapping can be extremely efficient in core-only systems, with trapping times orders of magnitude faster than radiative recombination. The presence of an inorganic shell can instead bring the trapping rates well below the typical radiative recombination rates observed in these systems.
Collapse
Affiliation(s)
- Francisco M Gómez-Campos
- Departamento de Electrónica y Tecnología de Computadores, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | | |
Collapse
|
9
|
Peng Y, Qiu C, Jockusch S, Scott AM, Li Z, Turro NJ, Ju J. CdSe/ZnS core shell quantum dot-based FRET binary oligonucleotide probes for detection of nucleic acids. Photochem Photobiol Sci 2011; 11:881-4. [PMID: 21874193 DOI: 10.1039/c1pp05132f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the design, synthesis, and characterization of a binary oligonucleotideprobe for selective DNA or RNA detection. The probe is based on fluorescence resonance energy transfer (FRET) from quantum dot (CdSe/ZnS core shell) DNA conjugates to organic dye (cyanine-5) DNA conjugates. Selective hybridization of the donor/acceptor DNA conjugates to target DNA enhances FRET and a change in fluorescence signature was observed.
Collapse
Affiliation(s)
- Yiru Peng
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Wang L, Li C. pH responsive fluorescence nanoprobe imaging of tumors by sensing the acidic microenvironment. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm12072g] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Affiliation(s)
- Mikhail Y. Berezin
- Department of Radiology, Washington University School of Medicine, 4525 Scott Ave, St. Louis, USA, Tel. 314-747-0701, 314-362-8599, fax 314-747-5191
| | - Samuel Achilefu
- Department of Radiology, Washington University School of Medicine, 4525 Scott Ave, St. Louis, USA, Tel. 314-747-0701, 314-362-8599, fax 314-747-5191
| |
Collapse
|
12
|
Chen ZQ, Lian C, Zhou D, Xiang Y, Wang M, Ke M, Liang LB, Yu XF. Greatly enhanced and controlled manganese photoluminescence in water-soluble ZnCdS:Mn/ZnS core/shell quantum dots. Chem Phys Lett 2010. [DOI: 10.1016/j.cplett.2010.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Gallagher SA, Moloney MP, Wojdyla M, Quinn SJ, Kelly JM, Gun'ko YK. Synthesis and spectroscopic studies of chiral CdSe quantum dots. ACTA ACUST UNITED AC 2010. [DOI: 10.1039/c0jm01185a] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Cooper DR, Suffern D, Carlini L, Clarke SJ, Parbhoo R, Bradforth SE, Nadeau JL. Photoenhancement of lifetimes in CdSe/ZnS and CdTe quantum dot-dopamine conjugates. Phys Chem Chem Phys 2009; 11:4298-310. [DOI: 10.1039/b820602c] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
|