1
|
Tanaka H, Funahashi J, Hirano T. Live-cell imaging of endocytosed synaptophysin around individual hippocampal presynaptic active zones. Front Cell Neurosci 2023; 17:1277729. [PMID: 37927445 PMCID: PMC10620501 DOI: 10.3389/fncel.2023.1277729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
In presynaptic terminals 4 types of endocytosis, kiss-and-run, clathrin-mediated, bulk and ultrafast endocytosis have been reported to maintain repetitive exocytosis of neurotransmitter. However, detailed characteristics and relative contribution of each type of endocytosis still need to be determined. Our previous live-cell imaging study demonstrated individual exocytosis events of synaptic vesicle within an active-zone-like membrane (AZLM) formed on glass using synaptophysin tagged with a pH-sensitive fluorescent protein. On the other hand, individual endocytosis events of postsynaptic receptors were recorded with a rapid extracellular pH exchange method. Combining these methods, here we live-cell imaged endocytosed synaptophysin with total internal reflection fluorescence microscopy in rat hippocampal culture preparations. Clathrin-dependent and -independent endocytosis, which was seemingly bulk endocytosis, occurred within several seconds after electrical stimulation at multiple locations around AZLM at room temperature, with the locations varying trial to trial. The contribution of clathrin-independent endocytosis was more prominent when the number of stimulation pulses was large. The skewness of synaptophysin distribution in intracellular vesicles became smaller after addition of a clathrin inhibitor, which suggests that clathrin-dependent endocytosis concentrates synaptophysin. Ultrafast endocytosis was evident immediately after stimulation only at near physiological temperature and was the predominant endocytosis when the number of stimulation pulses was small.
Collapse
Affiliation(s)
- Hiromitsu Tanaka
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
- Department of Developmental Biology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Junichiro Funahashi
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Tomoo Hirano
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
2
|
Abstract
Near-infrared (NIR) emitting fluorophores are powerful tools for optical imaging. However, there are only a handful of broadly employed NIR-emitting scaffolds, and the synthetic methods to prepare these molecules are often problematic. Here, we describe a novel, three-step synthesis of chromene-containing hemicyanine probes exhibiting large Stokes shifts and NIR emissions. We develop a pH-activatable probe for visualizing lysosomal trafficking of mAb conjugates. These studies provide a concise approach to hemicyanines with promising properties.
Collapse
Affiliation(s)
- Donald R Caldwell
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Syed Muhammad Usama
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Martin J Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
3
|
Wycisk V, Achazi K, Hillmann P, Hirsch O, Kuehne C, Dernedde J, Haag R, Licha K. Responsive Contrast Agents: Synthesis and Characterization of a Tunable Series of pH-Sensitive Near-Infrared Pentamethines. ACS OMEGA 2016; 1:808-817. [PMID: 30023492 PMCID: PMC6044694 DOI: 10.1021/acsomega.6b00182] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 09/20/2016] [Indexed: 05/15/2023]
Abstract
The demand for responsive dyes in optical imaging is high to achieve a better signal-to-noise ratio and, more specifically, to visualize acidic compartments of the endocytic pathway. Herein, we present a new synthetic route, with a step-by-step synthesis of water-soluble pH-sensitive cyanine dyes exhibiting pKa values in the region of physiological pH, as confirmed by absorption and fluorescence spectra. Moreover, modification of pKa values was achieved by two different substitution patterns, creating tunable pH-sensitive dyes. We demonstrated the functionality of the pH-sensitive dyes and their suitability as contrast agents for cellular uptake studies by preparing dye-labeled cetuximab and transferrin conjugates. Sulfonated head chains increased water solubility and prevented the formation of dimers, even in the context of dye-labeled bioconjugates. Confocal microscopy images of living cells revealed their pH-responsiveness, as specific fluorescence signal enhancements were observed in acidic compartments of the endocytic pathway (endosomes and lysosomes), although the background signal was low in a pH-neutral environment. Using mixtures of conjugates labeled with either a pH-sensitive or non-pH-sensitive dye for the uptake studies, we could follow the receptor binding and distinguish it from the endocytic uptake process of the conjugates in a simultaneous manner. Moreover, we used flow cytometry to quantify the fluorescence and observed a 3-fold signal enhancement for the pH-sensitive dye conjugates over a period of 3 h.
Collapse
Affiliation(s)
- Virginia Wycisk
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Katharina Achazi
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Paul Hillmann
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Ole Hirsch
- Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin, Germany
| | - Christian Kuehne
- Institute
of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Jens Dernedde
- Institute
of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Rainer Haag
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Kai Licha
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Takustr. 3, 14195 Berlin, Germany
| |
Collapse
|
4
|
Li J, Xing Y, Zhou Z, Yao W, Cao R, Li T, Xu M, Wu J. Microbial HSP70 peptide epitope 407–426 as adjuvant in tumor-derived autophagosome vaccine therapy of mouse lung cancer. Tumour Biol 2016; 37:15097-15105. [DOI: 10.1007/s13277-016-5309-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/05/2016] [Indexed: 11/25/2022] Open
|
5
|
TLR and NLRP3 inflammasome-dependent innate immune responses to tumor-derived autophagosomes (DRibbles). Cell Death Dis 2016; 7:e2322. [PMID: 27490927 PMCID: PMC5108312 DOI: 10.1038/cddis.2016.206] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/02/2016] [Accepted: 06/07/2016] [Indexed: 01/10/2023]
Abstract
Autophagosomes derived from tumor cells, also referred to as defective ribosomal products in blebs (DRibbles), have been previously shown to stimulate potent T-cell responses and mediate tumor regression when used as therapeutic cancer vaccines in multiple preclinical cancer models. In this report, we investigated the underlining mechanisms by which DRibbles induced T-cell activation, particularly how DRibbles activated antigen-presenting cells (APCs). We found that DRibbles could induce a rapid differentiation of monocytes and DC precursor (pre-DC) cells into functional APCs. DRibbles triggered innate receptor signaling via Toll-like Receptors (TLR)-2, TLR4, TLR7, TLR8, and nucleotide-binding oligomerization domain-containing protein 2 (NOD2), but not TLR3, TLR5, or TLR9. DRibbles induced PBMCs to produce pro-inflammatory cytokines, such as IL-6, IL-10, TNF-α, and IL-1β. DRibbles induced IL-1β release from PBMC or THP-1 cells without LPS priming, but required the core machinery of NLRP3 inflammasomes. Active endocytosis was required for inflammasome activation and cross presentation, and blocking endosome acidification or the ER-associated degradation (ERAD) pathway resulted in opposite effects on these two processes. Our data show that DRibbles could induce strong innate immune responses via multiple pattern recognition receptors, and explain why DRibbles could function as excellent antigen carriers to induce adaptive immune responses to both tumor cells and viruses. In contrast to the well-established inhibitory effect of autophagy on the inflammasome activation of APCs, our study demonstrates that isolated autophagosomes (DRibbles) from antigen donor cells activate inflammasomes by providing first and second signals required for IL-1β production by PMBC.
Collapse
|
6
|
Röther M, Brauner JM, Ebert K, Welzel O, Jung J, Bauereiss A, Kornhuber J, Groemer TW. Dynamic properties of the alkaline vesicle population at hippocampal synapses. PLoS One 2014; 9:e102723. [PMID: 25079223 PMCID: PMC4117485 DOI: 10.1371/journal.pone.0102723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 06/23/2014] [Indexed: 11/19/2022] Open
Abstract
In compensatory endocytosis, scission of vesicles from the plasma membrane to the cytoplasm is a prerequisite for intravesicular reacidification and accumulation of neurotransmitter molecules. Here, we provide time-resolved measurements of the dynamics of the alkaline vesicle population which appears upon endocytic retrieval. Using fast perfusion pH-cycling in live-cell microscopy, synapto-pHluorin expressing rat hippocampal neurons were electrically stimulated. We found that the relative size of the alkaline vesicle population depended significantly on the electrical stimulus size: With increasing number of action potentials the relative size of the alkaline vesicle population expanded. In contrast to that, increasing the stimulus frequency reduced the relative size of the population of alkaline vesicles. Measurement of the time constant for reacification and calculation of the time constant for endocytosis revealed that both time constants were variable with regard to the stimulus condition. Furthermore, we show that the dynamics of the alkaline vesicle population can be predicted by a simple mathematical model. In conclusion, here a novel methodical approach to analyze dynamic properties of alkaline vesicles is presented and validated as a convenient method for the detection of intracellular events. Using this method we show that the population of alkaline vesicles is highly dynamic and depends both on stimulus strength and frequency. Our results implicate that determination of the alkaline vesicle population size may provide new insights into the kinetics of endocytic retrieval.
Collapse
Affiliation(s)
- Mareike Röther
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Jan M. Brauner
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Katrin Ebert
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Oliver Welzel
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Jasmin Jung
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Anna Bauereiss
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Teja W. Groemer
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|