1
|
An P, Zhang Z, Yang J, Wang T, Wang Z, Sun CL, Qin C, Li J. Ultrasensitive and Label-Free Detection of Copper Ions by GHK-Modified Asymmetric Nanochannels. Anal Chem 2023; 95:13456-13462. [PMID: 37624577 DOI: 10.1021/acs.analchem.3c01174] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Artificial solid-state nanochannels have garnered considerable attention as promising nanofluidic tools for ion/molecular detection, DNA sequencing, and biomimicry. Recently, nanofluidic devices have emerged as cost-effective detection tools for heavy metal ions by modifying stimuli-responsive materials. In this work, high-purity glycyl-l-histidyl-l-lysine (GHK) peptide is synthesized by using 7-diphenylphosphonooxycoumarin-4-methanol (DPCM) as a protecting group and auxiliary carrier by homogeneous synthesis of photocleavable groups. Subsequently, we developed a GHK-modified asymmetric nanochannel nanofluidic diode by covalently attaching the GHK peptide to the inner surface of the nanochannels. This modification facilitated specific recognition and ultra-trace level detection of Cu2+ ions, achieving a detection limit of 10-15 M. Due to the robust complexing ability between Cu2+ and GHK peptide, the GHK-modified asymmetric nanochannels can form GHK-Cu complexes on the inner surface of nanochannels when Cu2+ passes through the nanochannels. This results in changes of current-potential (I-V) properties, which facilitated Cu2+ detection. Theoretical calculations confirmed the high affinity of the GHK peptide for Cu2+, thereby ensuring excellent Cu2+ selectivity. To evaluate the applicability of our system for detecting Cu2+ in real-world scenarios, we analyzed the concentration of Cu2+ in tap water. The GHK-Cu complexes could be dissociated by adding EDTA to the solution, enabling the regeneration and reuse of this ultrasensitive and label-free Cu2+ detection system using GHK-modified asymmetric multi-nanochannels. We anticipate that the GHK-modified asymmetric nanochannels will find future applications in the label-free detection of Cu2+ in domestic water.
Collapse
Affiliation(s)
- Pengrong An
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University. No. 127, Youyi Road (West), Xi'an, Shaanxi 710072, P.R. China
| | - Zixin Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University. No. 127, Youyi Road (West), Xi'an, Shaanxi 710072, P.R. China
| | - Jincan Yang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University. No. 127, Youyi Road (West), Xi'an, Shaanxi 710072, P.R. China
| | - Tianming Wang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University. No. 127, Youyi Road (West), Xi'an, Shaanxi 710072, P.R. China
| | - Zhuoyue Wang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University. No. 127, Youyi Road (West), Xi'an, Shaanxi 710072, P.R. China
| | - Chun-Lin Sun
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, No. 222 Tianshui Road (South), Lanzhou, Gansu 730000, P.R. China
| | - Chuanguang Qin
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University. No. 127, Youyi Road (West), Xi'an, Shaanxi 710072, P.R. China
| | - Jun Li
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University. No. 127, Youyi Road (West), Xi'an, Shaanxi 710072, P.R. China
| |
Collapse
|
2
|
Nghia NN, Huy BT, Khanh DNN, Van Cuong N, Li H, Lee YI. Straightforward smartphone assay for quantifying tannic acid in beverages based on colour change of Eu 3+/polyethyleneimine complex. Food Chem 2023; 410:135466. [PMID: 36646032 DOI: 10.1016/j.foodchem.2023.135466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Tannic acid (TA)-a natural product-is a polyphenol derivative that occurs in certain kinds of beverages. A large amount of TA could give rise to an unpleasant flavour and could negatively affect the human body by causing stomach irritation, abdominal pain, nausea, vomiting, and even death. Thus, the need exists for a simple TA detection procedure that meets specific criteria such as on-site analysis, portability, and affordability. Herein, we present a new TA assay, which is based on the fluorescent quenching effect of an efficient fluorophore, and which comprises a smartphone-integrated homemade reader system. The fluorescent polyethyleneimine-derivatised polymer (FP), a strong emitter at 510 nm, was synthesised with the aid of a facile sonication method. In the presence of Eu3+ ions, TA quenches the fluorescence of the FP via electrostatic interaction. A smartphone was used to capture an image of the FP undergoing fluorescence for conversion to RGB values. The blue channel was chosen for further analysis because it offered the highest R2-value compared to the red and green channels. We verified these results using a commercial spectrofluorometer and calculated the limit of detection of this assay as 87 nM and 20 nM for the homemade reader and spectrofluorometer, respectively. The detection range for TA with the proposed assay is 0.16-66.66 μM. The application of the proposed method to real beverage samples for TA detection demonstrates its analytical applicability.
Collapse
Affiliation(s)
- Nguyen Ngoc Nghia
- Department of Chemistry, Changwon National University, Changwon 51140, Republic of Korea
| | - Bui The Huy
- Department of Chemistry, Changwon National University, Changwon 51140, Republic of Korea; Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Dang Nguyen Nha Khanh
- National Institute of Applied Mechanics and Informatics, Vietnam Academy of Science and Technology, Ho Chi Minh City, Viet Nam
| | - Nguyen Van Cuong
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Hongchang Li
- Department of Chemistry, Changwon National University, Changwon 51140, Republic of Korea
| | - Yong-Ill Lee
- Department of Chemistry, Changwon National University, Changwon 51140, Republic of Korea; Department of Pharmacy, Pharmaceutical Technical University, Tashkent 100084, Uzbekistan.
| |
Collapse
|
3
|
Zhang G, Zhang G, Lai X, Su L, He W, Lai W, Deng S. Polyethyleneimine-induced fluorescence enhancement strategy for AIEgen: the mechanism and application. Anal Bioanal Chem 2023; 415:1347-1355. [PMID: 36693956 DOI: 10.1007/s00216-023-04526-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/24/2022] [Accepted: 01/04/2023] [Indexed: 01/26/2023]
Abstract
Aggregation-induced emission luminogens (AIEgens) are attracting extensive research attention in the biosensor fields. Herein, we report a new polyethyleneimine (PEI)-induced strategy for enhancing luminescence of TCBPE (an AIEgen) to promote its development in biosensor. The copolymer dots (TCBPE-PEI) with high quantum yield (39.7%) and outstanding stability were synthesized via a one-pot method. The fluorescence enhancement mechanism based on the PEI strategy originated from the restriction of intramolecular motions of TCBPEs and the form of donor-acceptor structures to decrease the inherent energy bandgap. Benefiting from chelating property of TCBPE-PEI by Cu2+, a fluorescence-quenching sensor for Cu2+ detection was developed based on the fluorescence quenching of the electron transfer effect. Especially, a good linear range of 10-250 nM with a low limit of detection 1.1 nM was achieved, and it was further applied in samples successfully. The current work provides a novel approach to fabricate AIEgen biosensors and shows great potential in Cu2+ detection.
Collapse
Affiliation(s)
- Gan Zhang
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, China.,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Ganggang Zhang
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, China
| | - Xiaocui Lai
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, China.,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Liu Su
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, China
| | - Weihua He
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, China
| | - Weihua Lai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China.
| | - Shengliang Deng
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, China.
| |
Collapse
|
4
|
Luo M, Di J, Li L, Tu Y, Yan J. Copper ion detection with improved sensitivity through catalytic quenching of gold nanocluster fluorescence. Talanta 2018; 187:231-236. [PMID: 29853040 DOI: 10.1016/j.talanta.2018.05.047] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/04/2018] [Accepted: 05/11/2018] [Indexed: 12/01/2022]
Abstract
In this report, a sensitive fluorescence detection of copper (Ⅱ) ion was developed. Although itself only a weak quencher toward gold nanocluster fluorescence, this ion functioned as a catalyst that accelerated the oxidation of iodide into iodine by a strong oxidant. The so-produced iodine quenched the nanocluster fluorescence through an efficient etching reaction, which rendered a much improved sensitivity for copper detection. Under the optimal conditions, the extent of quenching was found linear to the amount of copper in the range of 0.8-80 nM, and this strategy was capable of detecting copper ion as low as 0.33 nM. The method was selective and was successfully applied for related measurement in practical samples.
Collapse
Affiliation(s)
- Minchuan Luo
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Junwei Di
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Liang Li
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yifeng Tu
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Jilin Yan
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou 215123, China.
| |
Collapse
|