1
|
Alieva KN, Golikova MV, Kuznetsova AA, Zinner SH. Fluorescence Microscopy: Determination of Meropenem Activity against Klebsiella pneumoniae. Antibiotics (Basel) 2023; 12:1170. [PMID: 37508266 PMCID: PMC10376291 DOI: 10.3390/antibiotics12071170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/15/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
The development and implementation of diagnostic methods that allow rapid assessment of antibiotic activity against pathogenic microorganisms is an important step towards antibiotic therapy optimization and increase in the likelihood of successful treatment outcome. To determine whether fluorescence microscopy with acridine orange can be used for rapid assessment (≤8 h) of the meropenem activity against Klebsiella pneumoniae, six isolates including three OXA-48-carbapenemase-producers were exposed to meropenem at different levels of its concentration (0.5 × MIC, 1 × MIC, 8 or 16 µg/mL) and the changes in the viable counts within 24 h were evaluated using fluorescence microscopy and a control culture method. The approach was to capture the regrowth of bacteria as early as possible. Within the first 8 h fluorescence microscopy allowed to categorize 5 out of 6 K. pneumoniae strains by their meropenem susceptibility (based on the MIC breakpoint of 8 mg/L), but meropenem activity against three isolates, two of which were OXA-48-producers, could not be accurately determined at 8 h. The method proposed in our study requires improvement in terms of accelerating the bacterial growth and regrowth for early meropenem MIC determination. Volume-dependent elevation in meropenem MICs against OXA-48-producers was found and this phenomenon should be studied further.
Collapse
Affiliation(s)
- Kamilla N Alieva
- Department of Pharmacokinetics & Pharmacodynamics, Gause Institute of New Antibiotics, 11 Bolshaya Pirogovskaya Street, 119021 Moscow, Russia
| | - Maria V Golikova
- Department of Pharmacokinetics & Pharmacodynamics, Gause Institute of New Antibiotics, 11 Bolshaya Pirogovskaya Street, 119021 Moscow, Russia
| | - Anastasia A Kuznetsova
- Department of Pharmacokinetics & Pharmacodynamics, Gause Institute of New Antibiotics, 11 Bolshaya Pirogovskaya Street, 119021 Moscow, Russia
| | - Stephen H Zinner
- Department of Medicine, Harvard Medical School, Mount Auburn Hospital, 330 Mount Auburn Street, Cambridge, MA 02138, USA
| |
Collapse
|
2
|
Jiang X, Patil NA, Azad MAK, Wickremasinghe H, Yu H, Zhao J, Zhang X, Li M, Gong B, Wan L, Ma W, Thompson PE, Yang K, Yuan B, Schreiber F, Wang L, Velkov T, Roberts KD, Li J. A novel chemical biology and computational approach to expedite the discovery of new-generation polymyxins against life-threatening Acinetobacter baumannii. Chem Sci 2021; 12:12211-12220. [PMID: 34667587 PMCID: PMC8457388 DOI: 10.1039/d1sc03460j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/12/2021] [Indexed: 01/20/2023] Open
Abstract
Multidrug-resistant Gram-negative bacteria represent a major medical challenge worldwide. New antibiotics are desperately required with 'old' polymyxins often being the only available therapeutic option. Here, we systematically investigated the structure-activity relationship (SAR) of polymyxins using a quantitative lipidomics-informed outer membrane (OM) model of Acinetobacter baumannii and a series of chemically synthesized polymyxin analogs. By integrating chemical biology and all-atom molecular dynamics simulations, we deciphered how each residue of the polymyxin molecule modulated its conformational folding and specific interactions with the bacterial OM. Importantly, a novel designed polymyxin analog FADDI-287 with predicted stronger OM penetration showed improved in vitro antibacterial activity. Collectively, our study provides a novel chemical biology and computational strategy to expedite the discovery of new-generation polymyxins against life-threatening Gram-negative 'superbugs'.
Collapse
Affiliation(s)
- Xukai Jiang
- National Glycoengineering Research Center, Shandong University Qingdao China
- Biomedicine Discovery Institute, Infection & Immunity Program, Monash University Melbourne Australia +61 3 9905 6450 +61 3 9903 9702
| | - Nitin A Patil
- Biomedicine Discovery Institute, Infection & Immunity Program, Monash University Melbourne Australia +61 3 9905 6450 +61 3 9903 9702
| | - Mohammad A K Azad
- Biomedicine Discovery Institute, Infection & Immunity Program, Monash University Melbourne Australia +61 3 9905 6450 +61 3 9903 9702
| | - Hasini Wickremasinghe
- Biomedicine Discovery Institute, Infection & Immunity Program, Monash University Melbourne Australia +61 3 9905 6450 +61 3 9903 9702
| | - Heidi Yu
- Biomedicine Discovery Institute, Infection & Immunity Program, Monash University Melbourne Australia +61 3 9905 6450 +61 3 9903 9702
| | - Jinxin Zhao
- Biomedicine Discovery Institute, Infection & Immunity Program, Monash University Melbourne Australia +61 3 9905 6450 +61 3 9903 9702
| | - Xinru Zhang
- Biomedicine Discovery Institute, Infection & Immunity Program, Monash University Melbourne Australia +61 3 9905 6450 +61 3 9903 9702
| | - Mengyao Li
- Biomedicine Discovery Institute, Infection & Immunity Program, Monash University Melbourne Australia +61 3 9905 6450 +61 3 9903 9702
| | - Bin Gong
- School of Software, Shandong University Jinan China
| | - Lin Wan
- School of Software, Shandong University Jinan China
| | - Wendong Ma
- Centre for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University Suzhou China
| | - Philip E Thompson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Science, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University Melbourne Australia
| | - Kai Yang
- Centre for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University Suzhou China
| | - Bing Yuan
- Centre for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University Suzhou China
| | - Falk Schreiber
- Department of Computer and Information Science, University of Konstanz Konstanz Germany
- Faculty of Information Technology, Monash University Melbourne Australia
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University Qingdao China
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, University of Melbourne Melbourne Australia
| | - Kade D Roberts
- Biomedicine Discovery Institute, Infection & Immunity Program, Monash University Melbourne Australia +61 3 9905 6450 +61 3 9903 9702
| | - Jian Li
- Biomedicine Discovery Institute, Infection & Immunity Program, Monash University Melbourne Australia +61 3 9905 6450 +61 3 9903 9702
| |
Collapse
|
3
|
Rotem S, Steinberger-Levy I, Israeli O, Zahavy E, Aloni-Grinstein R. Beating the Bio-Terror Threat with Rapid Antimicrobial Susceptibility Testing. Microorganisms 2021; 9:1535. [PMID: 34361970 PMCID: PMC8304332 DOI: 10.3390/microorganisms9071535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 11/16/2022] Open
Abstract
A bioterror event using an infectious bacterium may lead to catastrophic outcomes involving morbidity and mortality as well as social and psychological stress. Moreover, a bioterror event using an antibiotic resistance engineered bacterial agent may raise additional concerns. Thus, preparedness is essential to preclude and control the dissemination of the bacterial agent as well as to appropriately and promptly treat potentially exposed individuals or patients. Rates of morbidity, death, and social anxiety can be drastically reduced if the rapid delivery of antimicrobial agents for post-exposure prophylaxis and treatment is initiated as soon as possible. Availability of rapid antibiotic susceptibility tests that may provide key recommendations to targeted antibiotic treatment is mandatory, yet, such tests are only at the development stage. In this review, we describe the recently published rapid antibiotic susceptibility tests implemented on bioterror bacterial agents and discuss their assimilation in clinical and environmental samples.
Collapse
Affiliation(s)
| | | | | | | | - Ronit Aloni-Grinstein
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 74100, Israel; (S.R.); (I.S.-L.); (O.I.); (E.Z.)
| |
Collapse
|
4
|
Abstract
For microorganisms in particular, viability is a term that is difficult to define and a state consequently difficult to measure. The traditional (and gold standard) usage equates viability and culturability (i.e., the ability to multiply) but the process of determining culturability is often too slow. Flow cytometry provides the opportunity to make rapid and quantitative measurements of dye uptake in large numbers of cells and we can therefore exploit the flow cytometric approach to evaluate so-called viability stains and to develop protocols for more routine assessments of microbial viability. This article provides a commentary and several protocols have been included to ensure that users have a firm basis for attempting these reasonably difficult assays on traditional flow cytometer instruments. What is clear is that each assay must be carefully validated with the particular microorganism of interest before being applied in any research, clinical, or service form. © 2020 The Authors.
Collapse
Affiliation(s)
- Hazel Davey
- Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Stéphane Guyot
- Université Bourgogne Franche-Comté, AgroSup Dijon, Dijon, France
| |
Collapse
|
5
|
Moses S, Aftalion M, Mamroud E, Rotem S, Steinberger-Levy I. Reporter-Phage-Based Detection and Antibiotic Susceptibility Testing of Yersinia pestis for a Rapid Plague Outbreak Response. Microorganisms 2021; 9:1278. [PMID: 34208306 PMCID: PMC8231171 DOI: 10.3390/microorganisms9061278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
Pneumonic plague is a lethal infectious disease caused by Yersinia pestis, a Tier-1 biothreat agent. Antibiotic treatment can save infected patients; however, therapy should begin within 24 h of symptom onset. As some Y. pestis strains showed an antibiotic resistance phenotype, an antibiotic susceptibility test (AST) must be performed. Performing the Clinical and Laboratory Standards Institute (CLSI)-recommended standard process, which includes bacterial isolation, enumeration and microdilution testing, lasts several days. Thus, rapid AST must be developed. As previously published, the Y. pestis-specific reporter phage ϕA1122::luxAB can serve for rapid identification and AST (ID-AST). Herein, we demonstrate the ability to use ϕA1122::luxAB to determine minimal inhibitory concentration (MIC) values and antibiotic susceptibility categories for various Y. pestis therapeutic antibiotics. We confirmed the assay by testing several nonvirulent Y. pestis isolates with reduced susceptibility to doxycycline or ciprofloxacin. Moreover, the assay can be performed directly on positive human blood cultures. Furthermore, as Y. pestis may naturally or deliberately be spread in the environment, we demonstrate the compatibility of this direct method for this scenario. This direct phage-based ID-AST shortens the time needed for standard AST to less than a day, enabling rapid and correct treatment, which may also prevent the spread of the disease.
Collapse
Affiliation(s)
| | | | | | | | - Ida Steinberger-Levy
- Department of Biochemistry and Molecular Genetics, The Israel Institute for Biological Research, Ness-Ziona 74100, Israel; (S.M.); (M.A.); (E.M.); (S.R.)
| |
Collapse
|
6
|
McGoverin C, Robertson J, Jonmohamadi Y, Swift S, Vanholsbeeck F. Species Dependence of SYTO 9 Staining of Bacteria. Front Microbiol 2020; 11:545419. [PMID: 33013779 PMCID: PMC7494787 DOI: 10.3389/fmicb.2020.545419] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/14/2020] [Indexed: 11/30/2022] Open
Abstract
SYTO 9 is a fluorescent nucleic acid stain that is widely used in microbiology, particularly for fluorescence microscopy and flow cytometry analyzes. Fluorimetry-based analysis, i.e., analysis of fluorescence intensity from a bulk sample measurement, is more cost effective, rapid and accessible than microscopy or flow cytometry but requires application-specific calibration. Here we show the relevance of SYTO 9 for food safety analysis. We stained four bacterial species of relevance to food safety (Bacillus cereus, Escherichia coli, Salmonella enterica subspecies enterica ser. Typhimurium, Staphylococcus aureus) with different concentrations of SYTO 9, with and without the presence of ethylenediaminetetraacetic acid (EDTA), for varying amounts of time, to investigate the effect of these treatment parameters on fluorescence intensity. The addition of EDTA and an increased staining duration did not significantly affect fluorescence intensity, and over the bacterial cell concentration range investigated (∼105–108 CFU/ml) there was no significant difference in using 0.5 or 1 μM SYTO 9. The effect of bacterial cell concentration on fluorescence intensity was species specific. At different bacterial cell concentrations, the effect of species on fluorescence intensity is different. This interaction complicates the development of a general fluorimetry-based protocol for the determination of bacterial cell concentration in a mixed bacterial suspension, as would be expected from samples taken from food safety settings.
Collapse
Affiliation(s)
- Cushla McGoverin
- Department of Physics, University of Auckland, Auckland, New Zealand.,The Dodd-Walls Centre for Photonic and Quantum Technologies, Auckland, New Zealand
| | - Julia Robertson
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Auckland, New Zealand.,Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Yaqub Jonmohamadi
- Department of Physics, University of Auckland, Auckland, New Zealand.,The Dodd-Walls Centre for Photonic and Quantum Technologies, Auckland, New Zealand
| | - Simon Swift
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Frédérique Vanholsbeeck
- Department of Physics, University of Auckland, Auckland, New Zealand.,The Dodd-Walls Centre for Photonic and Quantum Technologies, Auckland, New Zealand
| |
Collapse
|
7
|
Shifman O, Steinberger-Levy I, Aloni-Grinstein R, Gur D, Aftalion M, Ron I, Mamroud E, Ber R, Rotem S. A Rapid Antimicrobial Susceptibility Test for Determining Yersinia pestis Susceptibility to Doxycycline by RT-PCR Quantification of RNA Markers. Front Microbiol 2019; 10:754. [PMID: 31040834 PMCID: PMC6477067 DOI: 10.3389/fmicb.2019.00754] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/26/2019] [Indexed: 12/30/2022] Open
Abstract
Great efforts are being made to develop new rapid antibiotic susceptibility tests to meet the demand for clinical relevance versus disease progression. This is important especially in diseases caused by bacteria such as Yersinia pestis, the causative agent of plague, which grows rapidly in vivo but relatively slow in vitro. This compromises the ability to use standard growth-based susceptibility tests to obtain rapid and proper antibiotic treatment guidance. Using our previously described platform of quantifying antibiotic-specific transcriptional changes, we developed a molecular test based on changes in expression levels of doxycycline response-dependent marker genes that we identified by transcriptomic analysis. This enabled us to determine the minimal inhibitory concentration of doxycycline within 7 h compared to the 24 h required by the standard CLSI test. This assay was validated with various Y. pestis strains. Moreover, we demonstrated the applicability of the molecular test, combined with a new rapid bacterial isolation step from blood cultures, and show its relevance as a rapid test in clinical settings.
Collapse
Affiliation(s)
- Ohad Shifman
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Ida Steinberger-Levy
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Ronit Aloni-Grinstein
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - David Gur
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Moshe Aftalion
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Izhar Ron
- Department of Physical Chemistry, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Emanuelle Mamroud
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Raphael Ber
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Shahar Rotem
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| |
Collapse
|
8
|
Leonard H, Colodner R, Halachmi S, Segal E. Recent Advances in the Race to Design a Rapid Diagnostic Test for Antimicrobial Resistance. ACS Sens 2018; 3:2202-2217. [PMID: 30350967 DOI: 10.1021/acssensors.8b00900] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Even with advances in antibiotic therapies, bacterial infections persistently plague society and have amounted to one of the most prevalent issues in healthcare today. Moreover, the improper and excessive administration of antibiotics has led to resistance of many pathogens to prescribed therapies, rendering such antibiotics ineffective against infections. While the identification and detection of bacteria in a patient's sample is critical for point-of-care diagnostics and in a clinical setting, the consequent determination of the correct antibiotic for a patient-tailored therapy is equally crucial. As a result, many recent research efforts have been focused on the development of sensors and systems that correctly guide a physician to the best antibiotic to prescribe for an infection, which can in turn, significantly reduce the instances of antibiotic resistance and the evolution of bacteria "superbugs." This review details the advantages and shortcomings of the recent advances (focusing from 2016 and onward) made in the developments of antimicrobial susceptibility testing (AST) measurements. Detection of antibiotic resistance by genomic AST techniques relies on the prediction of antibiotic resistance via extracted bacterial DNA content, while phenotypic determinations typically track physiological changes in cells and/or populations exposed to antibiotics. Regardless of the method used for AST, factors such as cost, scalability, and assay time need to be weighed into their design. With all of the expansive innovation in the field, which technology and sensing systems demonstrate the potential to detect antimicrobial resistance in a clinical setting?
Collapse
Affiliation(s)
- Heidi Leonard
- Department of Biotechnology and Food Engineering, Technion − Israel Institute of Technology, Haifa, Israel 3200003
| | - Raul Colodner
- Laboratory of Clinical Microbiology, Emek Medical Center, Afula, Israel 18101
| | - Sarel Halachmi
- Department of Urology, Bnai Zion Medical Center, Haifa, Israel 3104800
| | - Ester Segal
- Department of Biotechnology and Food Engineering, Technion − Israel Institute of Technology, Haifa, Israel 3200003
- The Russell Berrie Nanotechnology Institute, Technion − Israel Institute of Technology, Haifa, Israel, 3200003
| |
Collapse
|