1
|
Zhang M, Chen G, Chen Y, Sui Y, Zhang Y, Yang W, Yu X. Synthesis, biological activities and mechanism studies of 1,3,4-oxadiazole analogues of petiolide A as anticancer agents. Mol Divers 2024; 28:3713-3737. [PMID: 38300352 DOI: 10.1007/s11030-023-10773-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/17/2023] [Indexed: 02/02/2024]
Abstract
In order to develop new natural product-based anticancer agents, a series of 1,3,4-oxadiazole analogues based on petiolide A were prepared and evaluated for their anticancer activities by MTT method. The structures of all analogues were characterized by various spectral analyses, and B9 was further confirmed by X-ray crystallography. Among all the synthesized compounds, B1 displayed the most promising growth inhibitory effect on colon cancer cells (HCT116) with the IC50 value of 8.53 μM. Flow cytometric analysis exhibited that B1 arrested the cell cycle at G2 phase and induced apoptosis. Additionally, network pharmacology analysis calculated that B1 might target several key proteins, including AKT serine/threonine kinase 1 (AKT1), SRC proto-oncogene, non-receptor tyrosine kinase (SRC) and epidermal growth factor receptor (EGFR). Furthermore, molecular docking study indicated that B1 had potentially high binding affinity to these three target proteins. Given these results, analogue B1 could be deeply developed as potential anticancer agents.
Collapse
Affiliation(s)
- Minjie Zhang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Guifen Chen
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Yafang Chen
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Yi Sui
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Yan Zhang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
- Guizhou Joint Laboratory for International Cooperation in Ethnic Medicine (Ministry of Education), Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Wude Yang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
- Guizhou Joint Laboratory for International Cooperation in Ethnic Medicine (Ministry of Education), Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| | - Xiang Yu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
- Guizhou Joint Laboratory for International Cooperation in Ethnic Medicine (Ministry of Education), Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| |
Collapse
|
2
|
Seraj F, Khan KM, Iqbal J, Imran A, Hussain Z, Salar U, Hameed S, Taha M. Evaluation of synthetic aminoquinoline derivatives as urease inhibitors: in vitro, in silico and kinetic studies. Future Med Chem 2023; 15:1703-1717. [PMID: 37814798 DOI: 10.4155/fmc-2023-0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023] Open
Abstract
Background: Quinoline and acyl thiourea scaffolds have major chemical significance in medicinal chemistry. Quinoline-based acyl thiourea derivatives may potentially target the urease enzyme. Materials & methods: Quinoline-based acyl thiourea derivatives 1-26 were synthesized and tested for urease inhibitory activity. Results: 19 derivatives (1-19) showed enhanced urease enzyme inhibitory potential (IC50 = 1.19-18.92 μM) compared with standard thiourea (IC50 = 19.53 ± 0.032 μM), whereas compounds 20-26 were inactive. Compounds with OCH3, OC2H5, Br and CH3 on the aryl ring showed significantly greater inhibitory potential than compounds with hydrocarbon chains of varying length. Molecular docking studies were conducted to investigate ligand interactions with the enzyme's active site. Conclusion: The identified hits can serve as potential leads against the drug target urease in advanced studies.
Collapse
Affiliation(s)
- Faiza Seraj
- HEJ Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Khalid Mohammed Khan
- HEJ Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
- Department of Clinical Pharmacy, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, PO Box 31441, Dammam, Saudi Arabia
| | - Jamshed Iqbal
- Center of Advanced Drug Research, COMSATS University Islamabad, Abbottabad, 22060, Pakistan
| | - Aqeel Imran
- Center of Advanced Drug Research, COMSATS University Islamabad, Abbottabad, 22060, Pakistan
- Department of Pharmacy, COMSATS University Islamabad, Lahore, 54000, Pakistan
| | - Zahid Hussain
- Center of Advanced Drug Research, COMSATS University Islamabad, Abbottabad, 22060, Pakistan
| | - Uzma Salar
- Dr Panjwani Center for Molecular Medicine & Drug Research, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Shehryar Hameed
- HEJ Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, PO Box 31441, Dammam, Saudi Arabia
| |
Collapse
|
3
|
Synthesis, carbonic anhydrase inhibition, anticancer activity, and molecular docking studies of 1,3,4-oxadiazole derivatives. Mol Divers 2023; 27:193-208. [PMID: 35344136 DOI: 10.1007/s11030-022-10416-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/22/2022] [Indexed: 02/08/2023]
Abstract
In this work, we have synthesized various organic compounds possessing 1,3,4-oxadiazole as a core structure and the structure of the newly synthesized target compounds has been revealed using different analytical approaches such as FT-IR, LCMS, and NMR (proton and carbon), respectively. The in vitro carbonic anhydrase potentials of these synthesized 17 different analogues were investigated. The result suggests that compound 7g, a 3-pyridine substituted analogue with an IC50 of 0.1 µM, was found to have the most potent carbonic inhibitory activity (11-fold more active) than the positive control (acetazolamide) with an IC50 of 1.1 ± 0.1 µM. Besides, among the series 7(a-q) approved in the identification of four potent carbonic anhydrase inhibitors with the IC50 standards varies from 0.1 to 1.0 ± 0.1 µM. Additionally, the non-competitive behaviour for potent compound 7g was analysed using the Lineweaver-Burk plot from the kinetic study. Furthermore, the anticancer activity of all the synthesized compounds screened against B16F10 melanoma cells using the MTT assay method. Additionally, the molecular docking studies revealed that 7g inhibitor shows good binding energy as well as good binding interaction pattern along with enzyme.
Collapse
|
4
|
Vanjare BD, Seok Eom Y, Raza H, Hassan M, Hwan Lee K, Ja Kim S. Elastase inhibitory activity of quinoline Analogues: Synthesis, kinetic mechanism, cytotoxicity, chemoinformatics and molecular docking studies. Bioorg Med Chem 2022; 63:116745. [PMID: 35421709 DOI: 10.1016/j.bmc.2022.116745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 11/19/2022]
Abstract
Herein, we have synthesized quinoline united various Schiff base derivatives (Q1-Q13) and systematically characterized them using diverse analytical practices such as 1H NMR, 13C NMR, FT-IR and LC-MS respectively. All of the target compounds that have been synthesized were tested for elastase inhibition, and the findings were compared to the standard drug oleanolic acid. Among the entire series, compound Q11 (IC50 = 0.897 ± 0.015 µM) exhibit most promising elastase inhibitory activity than oleanolic acid (Standard) having an IC50 value of 13.426 ± 0.015 µM. Also, the utmost effectivecompound Q11 was used for kinetic mechanism investigation based on in-vitro data, from which it has been concluded that compound Q11 inhibits elastase competitively. Furthermore, utilizing the MTT test approach, the most effective compounds were assessed for cytotoxicity on B16F10 melanoma cells. From the cytotoxicity experiment, the most potent compound did not display any hazardous response against B16F10 melanoma cells despite being treated at high concentrations. Additionally, the molecular docking study was settled to govern the binding interaction pattern among an enzyme and inhibitors.
Collapse
Affiliation(s)
- Balasaheb D Vanjare
- Department of Biological Sciences, Kongju National University, Gongju, Chungnam 32588, Republic of Korea
| | - Young Seok Eom
- Department of Biological Sciences, Kongju National University, Gongju, Chungnam 32588, Republic of Korea
| | - Hussain Raza
- Department of Biological Sciences, Kongju National University, Gongju, Chungnam 32588, Republic of Korea
| | - Mubashir Hassan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Ki Hwan Lee
- Department of Chemistry, Kongju National University, Gongju, Chungnam 32588, Republic of Korea
| | - Song Ja Kim
- Department of Biological Sciences, Kongju National University, Gongju, Chungnam 32588, Republic of Korea.
| |
Collapse
|
5
|
Vanjare BD, Mahajan PG, Dige NC, Raza H, Hassan M, Han Y, Kim SJ, Seo SY, Lee KH. Novel 1,2,4-triazole analogues as mushroom tyrosinase inhibitors: synthesis, kinetic mechanism, cytotoxicity and computational studies. Mol Divers 2021; 25:2089-2106. [PMID: 32399854 DOI: 10.1007/s11030-020-10102-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023]
Abstract
We have created a novel series of mushroom tyrosinase inhibitors with 1,2,4-triazole as fundamental skeleton. The target compound 1,2,4-triazol-3-ylthio)-N-phenyl acetamide derivatives 9(a-l) were synthesized by the reaction of 4- and 5-substituted 1,2,4-triazole-3-thiol derivatives 6(a-c) with 2-chloro-N-sub/un-substituted phenyl acetamide derivatives 8(a-d) under basic condition. By using the analytical techniques for instance, FTIR, LC-MS, 1H NMR and 13C NMR, the structural verification was evaluated. The novel series of the target compounds 9(a-l) has been scanned for biological activity (mushroom tyrosinase inhibition potential) which demonstrates adequate results. Interestingly, compound 9k (IC50 = 0.0048 ± 0.0016 µM) exhibits 3500 times more activity compared with standard drug kojic acid (IC50 = 16.8320 ± 1.1600 µM) against mushroom tyrosinase inhibitor. Furthermore, the cytotoxicity experiment was carried out for the highly effective target compounds (9d, 9i, 9j and 9k) by using MTT assay method for A375 human melanoma cells to define the nontoxic performance of the most effective compounds ranging from 1 to 25 µM. Furthermore, the molecular docking study delivers the thought concerning the interface of the ligand with an enzyme. Also, the dynamic simulation was accomplished for compound 9k to govern the plausible binding model.
Collapse
Affiliation(s)
- Balasaheb D Vanjare
- Department of Chemistry, Kongju National University, Gongju, Chungnam, 32588, Republic of Korea
| | - Prasad G Mahajan
- Department of Chemistry, Kongju National University, Gongju, Chungnam, 32588, Republic of Korea
| | - Nilam C Dige
- Department of Biological Sciences, Kongju National University, Gongju, Chungnam, 32588, Republic of Korea
| | - Hussain Raza
- Department of Biological Sciences, Kongju National University, Gongju, Chungnam, 32588, Republic of Korea
| | - Mubashir Hassan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, 54590, Pakistan
| | - Yohan Han
- Department of Biological Sciences, Kongju National University, Gongju, Chungnam, 32588, Republic of Korea
| | - Song Ja Kim
- Department of Biological Sciences, Kongju National University, Gongju, Chungnam, 32588, Republic of Korea
| | - Sung-Yum Seo
- Department of Biological Sciences, Kongju National University, Gongju, Chungnam, 32588, Republic of Korea
| | - Ki Hwan Lee
- Department of Chemistry, Kongju National University, Gongju, Chungnam, 32588, Republic of Korea.
| |
Collapse
|
6
|
Hamad A, Khan MA, Ahmad I, Khalil R, Khalid M, Abbas U, Azhar R, Uddin J, Batiha GES, Khan A, Shafiq Z, Al-Harrasi A. Bio-oriented synthesis of new sulphadiazine derivatives for urease inhibition and their pharmacokinetic analysis. Sci Rep 2021; 11:18973. [PMID: 34556784 PMCID: PMC8460821 DOI: 10.1038/s41598-021-98413-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/01/2021] [Indexed: 12/31/2022] Open
Abstract
Current research is based on biology-oriented synthesis of sulphadiazine derivatives and determination of their urease inhibitory activity. In this regard, a series of (E)-4-(benzylideneamino)-N-(pyrimidin-2-yl)benzenesulfonamide was synthesized from sulphadiazine and substituted aromatic aldehydes. The structures of synthesized compounds were ascertained by spectroscopic techniques, such as, FTIR, NMR and HRMS analysis, and in-vitro and in-silico investigation were carried out for the inhibition of urease. Ureases are harmful for humans by producing by-products of urea (ammonia and carbon dioxide). The most active compound (3l) against urease exhibited IC50 value of 2.21 ± 0.45 µM which is 10 times more potent than the standard thiourea (20.03 ± 2.06 µM). It is noteworthy that most of our synthesized compounds showed significant to excellent activities against urease enzyme and most of them substituted by halogen or hydroxy groups at ortho and para positions in their structures. Inhibition of enzyme by the synthesized analogues was in descending order as 3l > 3a > 3b > 3q > 3e > 3o > 3s > 3t > 3g > 3k > 3r > 3f > 3m > 3p > 3n > 3j > 3i > 3h. Moreover, molecular docking studies were performed to rationalize the binding interactions of the synthesized motifs with the active pocket of the urease enzyme. The synthesized sulphadiazine derivatives (3a-u) were found to be non-toxic, and presented passive gastrointestinal absorption.
Collapse
Affiliation(s)
- Asad Hamad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Mohsin Abbas Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Irshad Ahmad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Ruqaiya Khalil
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Urva Abbas
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Rahat Azhar
- Islam College of Pharmacy, Sialkot, Pakistan
| | - Jalal Uddin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, 62529, Kingdom of Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O Box 33, 616, Nizwa, Oman.
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O Box 33, 616, Nizwa, Oman.
| |
Collapse
|
7
|
Şahin S, Dege N. Synthesis, characterization, X-ray, HOMO-LUMO, MEP, FT-IR, NLO, Hirshfeld surface, ADMET, boiled-egg model properties and molecular docking studies with human cyclophilin D (CypD) of a Schiff base compound: (E)-1-(5-nitro-2-(piperidin-1-yl)phenyl)-N-(3-nitrophenyl)methanimine. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
8
|
Liang J, Sun D, Yang Y, Li M, Li H, Chen L. Discovery of metal-based complexes as promising antimicrobial agents. Eur J Med Chem 2021; 224:113696. [PMID: 34274828 DOI: 10.1016/j.ejmech.2021.113696] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 01/03/2023]
Abstract
The antimicrobial resistance (AMR) is an intractable problem for the world. Metal ions are essential for the cell process and biological function in microorganisms. Many metal-based complexes with the potential for releasing ions are more likely to be absorbed for their higher lipid solubility. Hence, this review highlights the clinical potential of organometallic compounds for the treatment of infections caused by bacteria or fungi in recent five years. The common scaffolds, including antimicrobial peptides, N-heterocyclic carbenes, Schiff bases, photosensitive-grand-cycle skeleton structures, aliphatic amines-based ligands, and special metal-based complexes are summarized here. We also discuss their therapeutic targets and the risks that should be paid attention to in the future studies, aiming to provide information for researchers on metal-based complexes as antimicrobial agents and inspire the design and synthesis of new antimicrobial drugs.
Collapse
Affiliation(s)
- Jing Liang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yueying Yang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Mingxue Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
9
|
Vanjare BD, Choi NG, Mahajan PG, Raza H, Hassan M, Han Y, Yu SM, Kim SJ, Seo SY, Lee KH. Novel 1,3,4-oxadiazole compounds inhibit the tyrosinase and melanin level: Synthesis, in-vitro, and in-silico studies. Bioorg Med Chem 2021; 41:116222. [PMID: 34058664 DOI: 10.1016/j.bmc.2021.116222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 11/17/2022]
Abstract
In this research work, we have designed and synthesized some biologically useful of 1,3,4-Oxadiazoles. The structural interpretation of the synthesized compounds has been validated by using FT-IR, LC-MS, HRMS, 1H NMR and 13C NMR techniques. Moreover, the in-vitro mushroom tyrosinase inhibitory potential of the target compounds was assessed. The in-vitro study reveals that, all compounds demonstrate an excellent tyrosinase inhibitory activity. Especially, 2-(5-(2-methoxyphenyl)-1,3,4-oxadiazol-2-ylthio)-N-phenylacetamide (IC50 = 0.003 ± 0.00 µM) confirms much more significant potent inhibition activity compared with standard drug kojic acid (IC50 = 16.83 ± 1.16 µM). Subsequently, the most potent five oxadiazole compounds were screened for cytotoxicity study against B16F10 melanoma cells using an MTT assay method. The survival rate for the most potent compound was more pleasant than other compounds. Furthermore, the western blot results proved that the most potent compound considerably decreased the expression level of tyrosinase at 50 µM (P < 0.05). The molecular docking investigation exposed that the utmost potent compound displayed the significant interactions pattern within the active region of the tyrosinase enzyme and which might be responsible for the decent inhibitory activity towards the enzyme. A molecular dynamic simulation experiment was presented to recognize the residual backbone stability of protein structure.
Collapse
Affiliation(s)
- Balasaheb D Vanjare
- Dept. of Chemistry, Kongju National University, Gongju, Chungnam 32588, Republic of Korea
| | - Nam Gyu Choi
- Dept. of Chemistry, Kongju National University, Gongju, Chungnam 32588, Republic of Korea
| | - Prasad G Mahajan
- Vidya Pratishthan's Arts, Science & Commerce College, Vidyanagari, Baramati, Maharashtra 413133, India
| | - Hussain Raza
- Department of Biological Science, Kongju National University, Gongju, Chungnam 32588, Republic of Korea
| | - Mubashir Hassan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, 54590, Pakistan
| | - Yohan Han
- Department of Biological Science, Kongju National University, Gongju, Chungnam 32588, Republic of Korea
| | - Seon-Mi Yu
- Department of Biological Science, Kongju National University, Gongju, Chungnam 32588, Republic of Korea
| | - Song Ja Kim
- Department of Biological Science, Kongju National University, Gongju, Chungnam 32588, Republic of Korea
| | - Sung-Yum Seo
- Department of Biological Science, Kongju National University, Gongju, Chungnam 32588, Republic of Korea
| | - Ki Hwan Lee
- Dept. of Chemistry, Kongju National University, Gongju, Chungnam 32588, Republic of Korea.
| |
Collapse
|
10
|
Vanjare BD, Mahajan PG, Dige NC, Raza H, Hassan M, Seo SY, Lee KH. Synthesis of novel xanthene based analogues: Their optical properties, jack bean urease inhibition and molecular modelling studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 241:118667. [PMID: 32693367 DOI: 10.1016/j.saa.2020.118667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/17/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
In this work, a series of the rhodamine 6G based derivatives 5a-5g, were synthesized. The structural framework of the synthesized compounds was established by using 1H NMR, 13C NMR, FT-IR, and LC-MS analytical methods. The spectroscopic properties of the target compounds were determined by using absorption and fluorescence study in four different solvents. Furthermore, the synthesized derivatives were assessed for in-vitro screening against jack bean urease inhibition and in-silico molecular docking study. The result reveals that all the compounds exhibit good urease inhibitory activity against this enzyme but among the series, the compound 5a &5c with an IC50 values of 0.1108 ± 0.0038 μM and 0.1136 ± 0.0295 μM shows to be most auspicious inhibitory activity compared to a standard drug (Thiourea) having IC50 value 4.7201 ± 0.0546 μM. Subsequently, the molecular docking experiment was analysed to distinguish the enzyme-inhibitor binding interaction.
Collapse
Affiliation(s)
- Balasaheb D Vanjare
- Department of Chemistry, Kongju National University, Gongju, Chungnam 32588, Republic of Korea
| | - Prasad G Mahajan
- Department of Chemistry, Kongju National University, Gongju, Chungnam 32588, Republic of Korea
| | - Nilam C Dige
- Department of Biological Sciences, Kongju National University, Gongju, Chungnam 32588, Republic of Korea
| | - Hussain Raza
- Department of Biological Sciences, Kongju National University, Gongju, Chungnam 32588, Republic of Korea
| | - Mubashir Hassan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, 54590, Pakistan
| | - Sung-Yum Seo
- Department of Biological Sciences, Kongju National University, Gongju, Chungnam 32588, Republic of Korea
| | - Ki Hwan Lee
- Department of Chemistry, Kongju National University, Gongju, Chungnam 32588, Republic of Korea.
| |
Collapse
|
11
|
Development of sulfonamide-based Schiff bases targeting urease inhibition: Synthesis, characterization, inhibitory activity assessment, molecular docking and ADME studies. Bioorg Chem 2020; 102:104057. [DOI: 10.1016/j.bioorg.2020.104057] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/04/2020] [Accepted: 06/26/2020] [Indexed: 01/24/2023]
|
12
|
Facile synthesis of new quinazolinone benzamides as potent tyrosinase inhibitors: Comparative spectroscopic and molecular docking studies. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.126915] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
13
|
Li Y, Xu L, Duan M, Wu J, Wang Y, Dong K, Han M, You Z. An acetohydroxamate-coordinated oxidovanadium(V) complex derived from pyridinohydrazone ligand with urease inhibitory activity. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Vanjare BD, Mahajan PG, Dige NC, Phull AR, Kim SJ, Lee KH. Synthesis and Studies on Photophysical Properties of Rhodamine Derivatives for Bioimaging Applications. B KOREAN CHEM SOC 2019. [DOI: 10.1002/bkcs.11733] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Balasaheb D. Vanjare
- Department of ChemistryKongju National University Gongju 32588 Republic of Korea
| | - Prasad G. Mahajan
- Department of ChemistryKongju National University Gongju 32588 Republic of Korea
| | - Nilam C. Dige
- Department of Biological SciencesKongju National University Gongju 32588 Republic of Korea
| | - Abdul Rehman Phull
- Department of Biological SciencesKongju National University Gongju 32588 Republic of Korea
- Department of BiochemistryShah Abdul Latif University Khairpur 66020 Pakistan
| | - Song Ja Kim
- Department of Biological SciencesKongju National University Gongju 32588 Republic of Korea
| | - Ki Hwan Lee
- Department of ChemistryKongju National University Gongju 32588 Republic of Korea
| |
Collapse
|