1
|
Lin Z, Shi Y, Song Y, Yan J, Li H, Xie C. Sensitive Fluorescent Probe for Al 3+, Cr 3+ and Fe 3+: Application in Real Water Samples and Logic Gate. J Fluoresc 2025:10.1007/s10895-024-04130-9. [PMID: 39798023 DOI: 10.1007/s10895-024-04130-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025]
Abstract
Construction of single probes for simultaneous detection of common trivalent metal ions has attracted much attention due to higher efficiency in analysis and cost. A naphthalimide-based fluorescent probe K1 was synthesized for selective detection of Al3+, Cr3+ and Fe3+ ions. Fluorescence emission intensity at 534 nm of probe K1 in DMSO/H2O (9:1, v/v) was significantly enhanced upon addition of Al3+, Cr3+ and Fe3+ ions while addition of other metal ions (Li+, Na+, K+, Ag+, Cu2+, Fe2+, Zn2+, Co2+, Ni2+, Mn2+, Sr2+, Hg2+, Ca2+, Mg2+, Ce3+, Bi3+ and Au3+) did not bring about substantial change in fluorescence emission. The calculated detection limits were 0.32 µM, 0.81 µM, and 0.27 µM for Al3+, Cr3+, and Fe3+, respectively. Probe K1 displayed strong anti-interference ability, a large Stokes shift, rapid response, and applicability in a wide pH range for the simultaneous detection of Al3+, Cr3+ and Fe3+ in real water samples. Job's plot test showed that the stoichiometric ratio of the complexes formed between probe K1 and the trivalent metal ions was 1:1. The reversible application of probe K1 was realized by addition of Na2EDTA. A molecular logic gate was built based on the input-output information. This approach may provide a basis for highly selective and sensitive detection of common trivalent cations and for design of memory devices.
Collapse
Affiliation(s)
- Ziyun Lin
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Yu Shi
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Yanxi Song
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jiabao Yan
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Hongqi Li
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China.
| | - Chengxiao Xie
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
2
|
Lalitha R, Velmathi S. A Study of Small Molecule-Based Rhodamine-Derived Chemosensors and their Implications in Environmental and Biological Systems from 2012 to 2021: Latest Advancement and Future Prospects. J Fluoresc 2024; 34:15-118. [PMID: 37212978 DOI: 10.1007/s10895-023-03231-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/28/2023] [Indexed: 05/23/2023]
Abstract
Rhodamine-based chemosensors have sparked considerable interest in recent years due to their remarkable photophysical properties, which include high absorption coefficients, exceptional quantum yields, improved photostability, and significant red shifts. This article presents an overview of the diverse fluorometric, and colorimetric sensors produced from rhodamine, as well as their applications in a wide range of fields. The ability of rhodamine-based chemosensors to detect a wide range of metal ions, including Hg+2, Al3+, Cr3+, Cu2+, Fe3+, Fe2+, Cd2+, Sn4+, Zn2+, and Pb2+, is one of their major advantages. Other applications of these sensors include dual analytes, multianalytes, and relay recognition of dual analytes. Rhodamine-based probes can also detect noble metal ions such as Au3+, Ag+, and Pt2+. They have been used to detect pH, biological species, reactive oxygen and nitrogen species, anions, and nerve agents in addition to metal ions. The probes have been engineered to undergo colorimetric or fluorometric changes upon binding to specific analytes, rendering them highly selective and sensitive by ring-opening via different mechanisms such as Photoinduced Electron Transfer (PET), Chelation Enhanced Fluorescence (CHEF), Intramolecular Charge Transfer (ICT), and Fluorescence Resonance Energy Transfer (FRET). For improved sensing performance, light-harvesting dendritic systems based on rhodamine conjugates has also been explored for enhanced sensing performance. These dendritic arrangements permit the incorporation of numerous rhodamine units, resulting in an improvement in signal amplification and sensitivity. The probes have been utilised extensively for imaging biological samples, including imaging of living cells, and for environmental research. Moreover, they have been combined into logic gates for the construction of molecular computing systems. The usage of rhodamine-based chemosensors has created significant potential in a range of disciplines, including biological and environmental sensing as well as logic gate applications. This study focuses on the work published between 2012 and 2021 and emphasises the enormous research and development potential of these probes.
Collapse
Affiliation(s)
- Raguraman Lalitha
- Organic and Polymer Synthesis Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620 015, India
| | - Sivan Velmathi
- Organic and Polymer Synthesis Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620 015, India.
| |
Collapse
|
3
|
Mehta R, Kumar S. ESIPT-based dual-emissive perimidine derivative as a rapid and sensitive sensor for Cu 2+ and Al 3+: Construction of memory device, 2-to-1 encoder and 1-to-2 decoder. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 293:122471. [PMID: 36801732 DOI: 10.1016/j.saa.2023.122471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/24/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
An ESIPT based fluorescent perimidine derivative oPSDAN was developed and characterized by 1H NMR, 13C NMR and mass spectroscopy. The study of the photo-physical properties of the sensor unveiled its selectivity and sensitivity towards Cu2+ and Al3+ ions. The sensing of ions was accompanied by colorimetric change (for Cu2+) as well as emission turn-off response. The binding stoichiometries of sensor oPSDAN with Cu2+ ion and Al3+ ions were determined to be 2:1 and 1:1, respectively. The binding constants and detection limits for Cu2+ and Al3+ were calculated from the UV-vis and fluorescence titration profiles as, 7.1 × 104 M-1, 1.9 × 104 M-1 and 9.89 nM, 1.5 × 10-8 M, respectively. The mechanism was established by 1H NMR as well as mass titrations and was supported by DFT and TD-DFT calculations. The UV-vis and fluorescence spectral results were further utilized for construction of memory device, encoder and decoder. Sensor-oPSDAN was also tested for determining Cu2+ ions in drinking water.
Collapse
Affiliation(s)
- Ruhi Mehta
- Department of Chemistry, Multani Mal Modi College, Patiala 147001, Punjab, India
| | - Sanjay Kumar
- Department of Chemistry, Multani Mal Modi College, Patiala 147001, Punjab, India.
| |
Collapse
|
4
|
Sarkar S, Chatterjee A, Biswas K. A Recent Update on Rhodamine Dye Based Sensor Molecules: A Review. Crit Rev Anal Chem 2023; 54:2351-2377. [PMID: 36705594 DOI: 10.1080/10408347.2023.2169598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Herein we have discussed such important modified rhodamine compounds which have been used as chemosensors for the last 7-8 years. This review covered some chemosensors for the detection of metal ions like Al(III), Cu(II), Hg(II), Co(II), Fe(III), Au(III), Cr(III), and some anion like CN-. The selectivity, sensitivity, photophysical properties (i.e., UV-Vis spectral studies, fluorescence studies giving special emphasis to absorption wavelength in UV-Vis spectra and excitation and emission wavelength in fluorescence spectra), binding affinity, the limit of detection, and the application of those chemosensors are described clearly. Here we have also discussed some functionalized rhodamine-based chemosensors that emit in the near-infrared region (NIR) and can target lysosomes and detect lysosomal pH. Their versatile applicability in the medicinal ground is also delineated. We have focused on the photophysical properties of spirolactam rhodamine photoswitches and applications in single-molecule localization microscopy and volumetric 3D light photoactivable dye displays. The real-time detection of radical intermediates has also been exemplified.
Collapse
Affiliation(s)
- Soma Sarkar
- Department of Chemistry, Raiganj University, Raiganj, Uttar Dinajpur, West Bengal, India
| | - Abhik Chatterjee
- Department of Chemistry, Raiganj University, Raiganj, Uttar Dinajpur, West Bengal, India
| | - Kinkar Biswas
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, India
| |
Collapse
|
5
|
Górski K, Mech-Piskorz J, Pietraszkiewicz M. From truxenes to heterotruxenes: playing with heteroatoms and the symmetry of molecules. NEW J CHEM 2022. [DOI: 10.1039/d2nj00816e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As a result of the modification of truxene, we can change the electronic structure or create multidimensional materials. Thus, the use of truxenes is very wide.
Collapse
Affiliation(s)
- Krzysztof Górski
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Justyna Mech-Piskorz
- Institute of Physical Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Marek Pietraszkiewicz
- Institute of Physical Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| |
Collapse
|
6
|
Nanbedeh S, Faghihi K. Synthesis and Characterization of New Mesoporous Polyurethane-Nitrogen Doped Carbon Dot Nanocomposites: Ultrafast, Highly Selective and Sensitive Turn-off Fluorescent Sensors for Fe 3+ Ions. J Fluoresc 2021; 31:517-539. [PMID: 33452636 DOI: 10.1007/s10895-020-02680-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/28/2020] [Indexed: 12/27/2022]
Abstract
A new fluorescent mesoporous polyurethane (PU) (9) was synthesized by reaction between 2,2'-(methylenebis(4,1-phenylene))bis(5-isocyanatoisoindoline-1,3-dione) (Diisocyanate) (5) and 4,4',4″-((1,3,5-triazine-2,4,6-triyl)tris (azanediyl))triphenol (Triol, TO) (8) (molar ratio 3:2). PU was characterized by using FT-IR, 1H-NMR, XRD, UV-Vis, TGA, Nitrogen adsorption-desorption isotherm, BET, FE-SEM and Photoluminescence (PL) analyses. To the best of our knowledge, this is the first time that a fluorescent polyurethane has been made without the use of commercial fluorescent materials. PU has high fluorescent intensity and it is ultrafast (about few seconds), highly selective and sensitive turn-off fluorescent sensor for Fe3+ ions. This chemosensor exhibited a wide concentration range of (10-250)×10-6 M Fe3+ with quenching efficiency (η) 97.50%. Limit of detection (LOD), limit of quantification (LOQ) and quenching constant (Ksv) values were calculated 10.10×10-6 M, 30.60×10-6 M and 6919.31 M-1, respectively. Nitrogen doped carbon dots (N-doped CDs) as fluorescent nanoparticles and with the aim of improving Fe3+ detecting were synthesized by microwave-assisted and using citric acid monohydrate (10) and ethylenediamine (11) as carbon and nitrogen sources, respectively. Fluorescent nanocomposites (FNCs) were prepared by using casting and in-situ methods. In both methods, two nanocomposites containing 5 and 10%w of N-doped CDs were prepared. FNCs were characterized by using FT-IR, UV-Vis, XRD, TGA, Nitrogen adsorption-desorption isotherm, BET, FE-SEM and PL analyses. All nanocomposites showed better thermal property and sensitivity and lower LOD values in lower concentration of Fe3+ related to PU. Among them, FNC10in exhibited the best results as η, LOD, LOQ, Ksv reached 99.80%, 1.15×10-6 M, 3.48×10-6 M and 53,551.48 M-1, respectively.
Collapse
Affiliation(s)
- Saber Nanbedeh
- Department of Chemistry, Faculty of Science, Arak University, Arak, 38156-8-8349, Iran
| | - Khalil Faghihi
- Department of Chemistry, Faculty of Science, Arak University, Arak, 38156-8-8349, Iran.
| |
Collapse
|
7
|
Akong RA, Görls H, Woods JAO, Plass W, Eseola AO. ESIPT-inspired fluorescent turn-on sensitivity towards aluminium(III) detection by derivatives of O- and S-bridged bis-(phenol-imine) molecules. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
8
|
Das S, Pratim Das P, Walton JW, Ghoshal K, Patra L, Bhattacharyya M. FRET based ratiometric switch for selective sensing of Al 3+ with bio-imaging in human peripheral blood mononuclear cells. NEW J CHEM 2021. [DOI: 10.1039/d0nj05546h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
FRET based ratiometric switch for selective sensing of Al3+ with bio-imaging in human peripheral blood mononuclear cells (PBMCs).
Collapse
Affiliation(s)
- Sangita Das
- Department of Chemistry
- Durham University
- Durham
- UK
| | - Partha Pratim Das
- Department of Earth System Sciences
- Yonsei University
- Seoul 120749
- Korea
| | | | - Kakali Ghoshal
- Department of Biochemistry
- University of Calcutta
- Kolkata 700019
- India
| | - Lakshman Patra
- Department of Chemistry
- Jadavpur University
- Jadavpur, Kolkata
- India
| | | |
Collapse
|
9
|
Mehta R, Luxami V. A Novel ‘
On‐Off
’ Rhodamine Based Sensor for Colorimetric Detection of CN
−
and Its Application as Encoder‐Decoder and Molecular Keypad Lock. ChemistrySelect 2020. [DOI: 10.1002/slct.202002987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Ruhi Mehta
- School of Chemistry and Biochemistry Thapar Institute of Engineering and Technology Patiala 147 001 India
| | - Vijay Luxami
- School of Chemistry and Biochemistry Thapar Institute of Engineering and Technology Patiala 147 001 India
| |
Collapse
|
10
|
Cao D, Zhu L, Liu Z, Lin W. Through bond energy transfer (TBET)-based fluorescent chemosensors. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2020. [DOI: 10.1016/j.jphotochemrev.2020.100371] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|