1
|
Majhi A, Venkateswarlu K, Sasikumar P. Coumarin Based Fluorescent Probe for Detecting Heavy Metal Ions. J Fluoresc 2024; 34:1453-1483. [PMID: 37581754 DOI: 10.1007/s10895-023-03372-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/25/2023] [Indexed: 08/16/2023]
Abstract
Heavy metals such as Iron, Copper, and Zinc are micro-essential trace metal and involve animportant biological role, but it quickly turns toxic at exceeding the permissible limit, causing gastrointestinal irritation, liver, bone, and kidney damage, as well as disorders including Wilson's, Parkinson's, and Alzheimer's. It is important to detect the metal ions as well as their concentration quickly and affordable cost using organic probes. Among the organic probes,the coumarin fluorescent probe shows a very prominent candidate with heavy metal ions. Therefore, in the present review, we reviewed the very recent literature the identify the heavy metals using modified coumarin fluorescent probes. Readers will get information quickly about the method of preparation of modified coumarin core and their use as fluorescent probes with heavy metals using absorption and emission spectroscopic methods along with the probable mechanistic pathway of detection.
Collapse
Affiliation(s)
- Anjoy Majhi
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700073, India.
| | - Katta Venkateswarlu
- Laboratory for Synthetic and Natural Products Chemistry, Department of Chemistry, Yogi Vemana University, Kadapa, 516005, India
| | - Palani Sasikumar
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700073, India.
| |
Collapse
|
2
|
Şahin ME, Biryan F, Çalışkan E, Koran K. Coumarin-Phosphazenes: Enhanced Photophysical Properties from Hybrid Materials. Inorg Chem 2024; 63:11006-11020. [PMID: 38822816 DOI: 10.1021/acs.inorgchem.4c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2024]
Abstract
Phosphazenes have drawn a great deal of interest over the past 20 years as a potentially useful building block for the fabrication of fluorescent materials. The main objective of this work is to explore novel derivatives produced by coumarins, a class of chemicals well-known for their photophysical importance, and cyclophosphazenes. UV absorbance, fluorescence emission, quantum yield, and lifetime measurements were conducted to comprehend the optical properties. Furthermore, single-crystal X-ray analysis and theoretical calculations were carried out to confirm the structure of the molecule. The obtained findings collectively confirm the commendable optical properties exhibited by the studied compounds. Moreover, a detailed study of the crystal packing arrangement of DPP-Et-Kum-Et compound crystallized in the P21/n monoclinic space group revealed the presence of stacking interactions between the nonplanar conjugated benzene rings of the coumarins and the rigid diphenyl groups attached to the phosphazene ring. The crystal structure of the DPP-Kum-Me-Me compound is mainly based on classical C-H···O intermolecular hydrogen bonding interactions with an average distance of 2.52 Å. Importantly, the calculated absorption spectra of the compounds are in close agreement with the experimental data, further supporting their interesting electronic properties. Given that the DPP-Et-Kum-Et and DPP-Kum-Et compounds have the theoretically lowest band gaps (4.31 and 4.30 eV, respectively), the activation energies of these compounds were determined by an impedance analyzer using dc conductance values measured at different temperatures. The calculated activation energies for DPP-Et-Kum-Et and DPP-Kum-Et are 104.49 and 100.92 meV, respectively. The results demonstrate that both theoretical and experimental calculations are in agreement with each other and that the DPP-Kum-Et compound has the lowest conductivity.
Collapse
Affiliation(s)
| | - Fatih Biryan
- Department of Chemistry, Fırat University, Elazig 23119, Turkey
| | - Eray Çalışkan
- Department of Chemistry, Bingol University, Bingol 12000, Turkey
| | - Kenan Koran
- Department of Chemistry, Fırat University, Elazig 23119, Turkey
| |
Collapse
|
3
|
Chopra T, Parkesh R. Microwave-Assisted Synthesis of Functionalized Carbon Nanospheres Using Banana Peels: pH-Dependent Synthesis, Characterization, and Selective Sensing Applications. ACS OMEGA 2024; 9:4555-4571. [PMID: 38313540 PMCID: PMC10831994 DOI: 10.1021/acsomega.3c07544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 02/06/2024]
Abstract
This work presents a microwave-based green synthesis method for producing carbon nanospheres (CNSs) and investigates the impact of presynthesis pH on their size and assembly. The resulting CNSs are monodispersed, averaging 35 nm in size, and exhibit notable characteristics including high water solubility, photostability, and a narrow size distribution, achieved within a synthesis time of 15 min. The synthesized CNS features functional groups such as -OH, -COOH, -NH, -C-O-C, =C-H, and -CH. This diversity empowers the CNS for various applications including sensing. The CNS exhibits a distinct UV peak at 282 nm and emits intense fluorescence at 430 nm upon excitation at 350 nm. These functionalized CNSs enable selective and specific sensing of Cu2+ ions and the amino acid tryptophan (Trp) in aqueous solutions. In the presence of Cu2+ ions, static-based quenching of CNS fluorescence was observed due to the chelation-enhanced quenching (CHEQ) effect. Notably, Cu2+ ions induce a substantial change in UV spectra alongside a red-shift in the peak position. The limits of detection and quantification for Cu2+ ions with CNS are determined as 0.73 and 2.45 μg/mL, respectively. Additionally, on interaction with tryptophan, the UV spectra of CNS display a marked increase in the peak at 282 nm, accompanied by a red-shift phenomenon. The limits of detection and quantification for l-tryptophan are 4.510 × 10-3 and 1.50 × 10-2 μg/mL, respectively, indicating its significant potential for biological applications. Furthermore, the practical applicability of CNSs is demonstrated by their successful implementation in analyzing real water samples and filter paper-based examination, showcasing their effectiveness for on-site sensing.
Collapse
Affiliation(s)
- Tavishi Chopra
- CSIR-Institute
of Microbial Technology, Chandigarh 160036, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Raman Parkesh
- CSIR-Institute
of Microbial Technology, Chandigarh 160036, India
| |
Collapse
|
4
|
Deng L, Xue L, Gao Y, Fu S, Wang H. A coumarin based ratiometric fluorescent probe for the detection of Cu 2+ and mechanochromism as well as application in living cells and vegetables. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123479. [PMID: 37806239 DOI: 10.1016/j.saa.2023.123479] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/11/2023] [Accepted: 09/29/2023] [Indexed: 10/10/2023]
Abstract
In this paper, a novel coumarin-derived fluorescent probe NY was designed and synthesized. NY displayed a significant ratiometric fluorescence response towards Cu2+ in PBS buffer (10 mM, pH = 7.4), with the emission wavelength blue-shifted from 580 to 495 nm, and a fluorescence change from orange to green was evident under a 365 nm UV light. Meanwhile, NY had the advantages of high selectivity, short response time (5 min), low detection limit (1.3 × 10-8 M) and large binding constant (1.45 × 105 M-1) towards Cu2+. The binding mechanism between NY and Cu2+ was elucidated by FT-IR, 1H NMR titration, TOF-MS and Job's plot analysis. In addition, NY was successfully employed in the detection of Cu2+ within environmental water and vegetable samples with satisfactory results. Laser confocal microscopy imaging results showed that NY could easily penetrate HeLa cells membrane to target mitochondria and image Cu2+ in living cells. Furthermore, NY demonstrated mechanochromic properties by exhibiting orange-red fluorescence when subjected to mechanical grinding.
Collapse
Affiliation(s)
- Linlong Deng
- College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan 756000, People's Republic of China
| | - Lei Xue
- College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan 756000, People's Republic of China; Key Laboratory of Green Catalytic Materials and Technologies of Ningxia Hui Autonomous Region, People's Republic of China
| | - Yunke Gao
- College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan 756000, People's Republic of China
| | - Shuai Fu
- College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan 756000, People's Republic of China
| | - Haibin Wang
- College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan 756000, People's Republic of China; Key Laboratory of Green Catalytic Materials and Technologies of Ningxia Hui Autonomous Region, People's Republic of China.
| |
Collapse
|
5
|
Kaur H, Riya, Singh A, Singh H, Ranjan Lal U, Kumar A, Chaitanya MVNL. Molecular recognition of carbonate ion using a novel turn-on fluorescent probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123270. [PMID: 37611524 DOI: 10.1016/j.saa.2023.123270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
A novel turn-on fluorescent probe 3 was synthesized by condensing salicylaldehyde and nicotinic hydrazide for the selective detection of CO32- in aqueous medium. Probe 3 exhibited a turn-on fluorescence response toward CO32- with excellent selectivity, sensitivity (DL = 2.76 μM), and good reversibility. The binding constant (K) of probe 3 with CO32- was calculated to be 5 × 103 M-1 (log K 3.69). The 1:1 stoichiometry of the complex between probe 3 and CO32- ions was confirmed by Job's plot and ESI-MS spectra. Deprotonation and hydrogen-bonding interactions are involved in the recognition of CO32- ion, which was also suggested by 1H NMR, ESI-MS spectra, and Density Functional Theory (DFT) calculations. Moreover, an INHIBIT type molecular logic gate was constructed by using 3:CO32- and CH3COOH as inputs and current signal as output. Owing to the practical applications, probe 3 demonstrated its efficiency in quantifying CO32- ion in real water samples through standard addition method, thus showcasing its potential in real environment. Further, the MTT assay indicated very low cytotoxicity (IC50 = 1 mM) of probe 3 and also the cell imaging experiments demonstrated the effective sensing of CO32- ions with probe 3 in the biological systems.
Collapse
Affiliation(s)
- Hardeep Kaur
- Post Graduate Department of Chemistry, Khalsa College Amritsar, Punjab 143102, India.
| | - Riya
- Post Graduate Department of Chemistry, Khalsa College Amritsar, Punjab 143102, India
| | - Amandeep Singh
- Department of Pharmacognosy and Phytochemistry, Khalsa College of Pharmacy, Amritsar, Punjab 143102, India.
| | - Harpreet Singh
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Uma Ranjan Lal
- Department of Natural Product, National Institute of Pharmaceutical and Education Research, Mohali, Punjab 160062, India
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical and Education Research, Mohali, Punjab 160062, India
| | - M V N L Chaitanya
- Department of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| |
Collapse
|
6
|
Li Y, Wang L, Wang L, Zhu B, Ma J. A novel carbazole-based fluorometric and colorimetric sensor for the highly sensitive and specific detection of Cu 2+ in aqueous solution. RSC Adv 2023; 13:33276-33287. [PMID: 37964909 PMCID: PMC10641437 DOI: 10.1039/d3ra04571d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2023] Open
Abstract
Based on the typical Suzuki coupling reaction and Schiff base reaction, a novel fluorescent molecular PCBW is synthesized and applied as a fluorescence and colorimetric sensor to detect Cu2+ in aqueous solution. The PCBW sensor presents the aggregation-caused quenching (ACQ) effect and at 1 × 10-5 mol L-1 it emits the strongest turquoise fluorescence in the DMSO-H2O system (fw = 40%). The sensor exhibits a 'turn-off' fluorescent characteristic by adding Cu2+, and its fluorescent intensity shows a reliable linear relationship with the Cu2+ concentration in the range of 0-6 × 10-6 mol L-1, with a detection limit of 1.19 × 10-8 mol L-1. Meanwhile, the PCBW sensor also exhibits the colorimetric sensing from colorless to light yellow. The sensor has good selectivity and anti-interference and its pH application range can be extended from 5 to 10. The intramolecular charge transfer (ICT) is speculated as the main fluorescence mechanism of PCBW. In addition, the sensor presents good reusability and is practicable to detect Cu2+ in diverse aqueous samples.
Collapse
Affiliation(s)
- Yiduo Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology Shanghai 200093 P. R. China
| | - Luyue Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology Shanghai 200093 P. R. China
| | - Liqiang Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology Shanghai 200093 P. R. China
| | - Baokun Zhu
- School of Materials and Chemistry, University of Shanghai for Science and Technology Shanghai 200093 P. R. China
| | - Jie Ma
- School of Materials and Chemistry, University of Shanghai for Science and Technology Shanghai 200093 P. R. China
| |
Collapse
|
7
|
Jin YJ, Si BM, Kim E, Lee J, Kim H, Kwak G, Sakaguchi T, Lee J, Song IY, Lee CL, Kim JH, Heo K, Lee WE. Reusable, Ultrasensitive, Patterned Conjugated Polyelectrolyte-Surfactant Complex Film with a Wide Detection Range for Copper Ion Detection. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12339-12349. [PMID: 36847579 DOI: 10.1021/acsami.2c21388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Conjugated polyelectrolytes (CPEs) are emerging as promising materials in the sensor field because they enable high-sensitivity detection of various substances in aqueous media. However, most CPE-based sensors have serious problems in real-world application because the sensor system is operated only when the CPE is dissolved in aqueous media. Here, the fabrication and performance of a water-swellable (WS) CPE-based sensor driven in the solid state are demonstrated. The WS CPE films are prepared by immersing a water-soluble CPE film in cationic surfactants of different alkyl chain lengths in a chloroform solution. The prepared film exhibits rapid, limited water swellability despite the absence of chemical crosslinking. The water swellability of the film enables the highly sensitive and selective detection of Cu2+ in water. The fluorescence quenching constant and the detection limit of the film are 7.24 × 106 L mol-1 and 4.38 nM (0.278 ppb), respectively. Moreover, the film is reusable via a facile treatment. Furthermore, various fluorescent patterns introduced by different surfactants are successfully fabricated by a simple stamping method. By integrating the patterns, Cu2+ detection in a wide concentration range (nM-mM) can be achieved.
Collapse
Affiliation(s)
- Young-Jae Jin
- Reliability Assessment Center for Chemical Materials, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, South Korea
| | - Beom-Min Si
- Reliability Assessment Center for Chemical Materials, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, South Korea
| | - Eonji Kim
- Reliability Assessment Center for Chemical Materials, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, South Korea
| | - Jineun Lee
- Department of Polymer Science & Engineering, Polymeric Nanomaterials Laboratory, Kyungpook National University, 1370 Sankyuk-dong, Buk-ku, Daegu 41566, South Korea
| | - Heesang Kim
- Department of Polymer Science & Engineering, Polymeric Nanomaterials Laboratory, Kyungpook National University, 1370 Sankyuk-dong, Buk-ku, Daegu 41566, South Korea
| | - Giseop Kwak
- Department of Polymer Science & Engineering, Polymeric Nanomaterials Laboratory, Kyungpook National University, 1370 Sankyuk-dong, Buk-ku, Daegu 41566, South Korea
| | - Toshikazu Sakaguchi
- Department of Materials Science and Engineering, Graduate School of Engineering, University of Fukui, Bunkyo 3-9-1, Fukui 910-8507, Japan
| | - Jinhee Lee
- Reliability Assessment Center for Chemical Materials, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, South Korea
| | - In Young Song
- Reliability Assessment Center for Chemical Materials, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, South Korea
| | - Chang-Lyoul Lee
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, 1 Oryong-dong, Buk-gu, Gwangju 61005, South Korea
| | - Joon Heon Kim
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, 1 Oryong-dong, Buk-gu, Gwangju 61005, South Korea
| | - Kyuyoung Heo
- Reliability Assessment Center for Chemical Materials, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, South Korea
| | - Wang-Eun Lee
- Reliability Assessment Center for Chemical Materials, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, South Korea
| |
Collapse
|
8
|
Recent trends in fluorescent-based copper (II) chemosensors and their biomaterial applications. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
9
|
Pyrene derived imine functionalized moiety for highly selective colorimetric detection of Cu2+ ion real time sample with supportive DFT studies. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
10
|
Naphthalimide-Piperazine Derivatives as Multifunctional "On" and "Off" Fluorescent Switches for pH, Hg 2+ and Cu 2+ Ions. Molecules 2023; 28:molecules28031275. [PMID: 36770945 PMCID: PMC9918953 DOI: 10.3390/molecules28031275] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/13/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
Novel 1,8-naphthalimide-based fluorescent probes NI-1 and NI-2 were designed and screened for use as chemosensors for detection of heavy metal ions. Two moieties, methylpyridine (NI-1) and hydroxyphenyl (NI-2), were attached via piperazine at the C-4 position of the napthalimide core resulting in a notable effect on their spectroscopic properties. NI-1 and NI-2 are pH sensitive and show an increase in fluorescence intensity at around 525 nm (switch "on") in the acidic environment, with pKa values at 4.98 and 2.91, respectively. Amongst heavy metal ions only Cu2+ and Hg2+ had a significant effect on the spectroscopic properties. The fluorescence of NI-1 is quenched in the presence of either Cu2+ or Hg2+ which is attributed to the formation of 1:1 metal-ligand complexes with binding constants of 3.6 × 105 and 3.9 × 104, respectively. The NI-1 chemosensor can be used for the quantification of Cu2+ ions in sub-micromolar quantities, with a linear range from 250 nM to 4.0 μM and a detection limit of 1.5 × 10-8 M. The linear range for the determination of Hg2+ is from 2 μM to 10 μM, with a detection limit of 8.8 × 10-8 M. Conversely, NI-2 behaves like a typical photoinduced electron transfer (PET) sensor for Hg2+ ions. Here, the formation of a complex with Hg2+ (binding constant 8.3 × 103) turns the green fluorescence of NI-2 into the "on" state. NI-2 showed remarkable selectivity towards Hg2+ ions, allowing for determination of Hg2+ concentration over a linear range of 1.3 μM to 25 μM and a limit of detection of 4.1 × 10-7 M.
Collapse
|
11
|
Chopra T, Sasan S, Devi L, Parkesh R, Kapoor KK. A comprehensive review on recent advances in copper sensors. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Copper (II)-Catalyzed Oxidation of Ascorbic Acid: Ionic Strength Effect and Analytical Use in Aqueous Solution. INORGANICS 2022. [DOI: 10.3390/inorganics10070102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Copper is an important metal both in living organisms and in the industrial activity of humans, it is also a distributed water pollutant and a toxic agent capable of inducing acute and chronic health disorders. There are several fluorescent chemosensors for copper (II) determination in solutions; however, they are often difficult to synthesize and solvent-sensitive, requiring a non-aqueous medium. The present paper improves the known analytical technique for copper (II) ions, where the linear dependence between the ascorbic acid oxidation rate constant and copper (II) concentration is used. The limits of detection and quantification of the copper (II) analysis kinetic method are determined to be 82 nM and 275 nM, respectively. In addition, the selectivity of the chosen indicator reaction is shown: Cu2+ cations can be quantified in the presence of the 5–20 fold excess of Co2+, Ni2+, and Zn2+ ions. The La3+, Ce3+, and UO22+ ions also do not catalyze the ascorbic acid oxidation reaction. The effect of the concentration of the common background electrolytes is studied, the anomalous influence for chloride-containing salts is observed and discussed.
Collapse
|
13
|
Gauthama B, Narayana B, Sarojini B, Kodlady S, Sangappa Y, Kudva AK, Raghu S. A versatile rhodamine B-derived fluorescent probe for selective copper(II) sensing. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Srisuwan P, Sappasombut A, Thongyod W, Jantarat T, Tipmanee V, Leesakul N, Sooksawat D. Highly sensitive and selective coumarin-based fluorescent chemosensor for Cu2+ detection. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113841] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Review article on “effects of ions on the fluorescence of coumarin derivatives”. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-01955-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Mohan B, Modi K, Parikh J, Ma S, Kumar S, Kumar Manar K, Sun F, You H, Ren P. Efficacy of 2-nitrobenzylidene-hydrazine-based selective and rapid sensor for Cu2+ ions, histidine, and tyrosine: Spectral and computational study. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113557] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Karuk Elmas SN, Arslan FN, Aydin D. A novel ratiometric fluorescent and colorimetric sensor based on a 1,8-naphthalimide derivative for nanomolar Cu 2+ sensing: smartphone and food applications. Analyst 2022; 147:2687-2695. [DOI: 10.1039/d2an00537a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel 1,8-naphthalimide-based chemical sensor with ratiometric fluorescence behavior, as well as “naked-eye” response was developed for the sensitive and specific determination of Cu2+ at nanomolar levels.
Collapse
Affiliation(s)
- Sukriye Nihan Karuk Elmas
- Department of Chemistry, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey
| | - Fatma Nur Arslan
- Department of Chemistry, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey
| | - Duygu Aydin
- Department of Chemistry, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey
| |
Collapse
|
18
|
Near infrared and colorimetric fluorescence sensor for ultra-selective detection of Cu2+ level with applications in diverse water samples, brain tumor cell and flow injection analysis. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Sharma S, Ghosh KS. Overview on recently reported fluorometric sensors for the detection of copper ion based on internal charge transfer (ICT), paramagnetic effect and aggregation induced emission (AIE) mechanisms. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130324] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Savran T, Nihan Karuk Elmas S, Akin Geyik G, Bostanci A, Aydin D, Nur Arslan F, Sadi G, Yilmaz I. “Turn‐on” Fluorescence Chemosensor Based Probing of Cu
2+
with Excellent Sensitivity: Experimental Study, DFT Calculations and Application in Living Cells and Natural Waters. ChemistrySelect 2021. [DOI: 10.1002/slct.202101060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tahir Savran
- Karamanoglu Mehmetbey University, Kamil Ozdag Science Faculty, Department of Chemistry 70100 Karaman Turkey
| | - Sukriye Nihan Karuk Elmas
- Karamanoglu Mehmetbey University, Kamil Ozdag Science Faculty, Department of Chemistry 70100 Karaman Turkey
| | - Gonul Akin Geyik
- Karamanoglu Mehmetbey University, Kamil Ozdag Science Faculty, Department of Chemistry 70100 Karaman Turkey
| | - Aykut Bostanci
- Karamanoglu Mehmetbey University, Kamil Ozdag Science Faculty, Department of Chemistry 70100 Karaman Turkey
| | - Duygu Aydin
- Karamanoglu Mehmetbey University, Kamil Ozdag Science Faculty, Department of Chemistry 70100 Karaman Turkey
| | - Fatma Nur Arslan
- Karamanoglu Mehmetbey University, Kamil Ozdag Science Faculty, Department of Chemistry 70100 Karaman Turkey
| | - Gökhan Sadi
- Karamanoglu Mehmetbey University, Kamil Ozdag Science Faculty, Department of Chemistry 70100 Karaman Turkey
| | - Ibrahim Yilmaz
- Karamanoglu Mehmetbey University, Kamil Ozdag Science Faculty, Department of Chemistry 70100 Karaman Turkey
| |
Collapse
|
21
|
Carneiro A, Matos MJ, Uriarte E, Santana L. Trending Topics on Coumarin and Its Derivatives in 2020. Molecules 2021; 26:501. [PMID: 33477785 PMCID: PMC7832358 DOI: 10.3390/molecules26020501] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 12/24/2022] Open
Abstract
Coumarins are naturally occurring molecules with a versatile range of activities. Their structural and physicochemical characteristics make them a privileged scaffold in medicinal chemistry and chemical biology. Many research articles and reviews compile information on this important family of compounds. In this overview, the most recent research papers and reviews from 2020 are organized and analyzed, and a discussion on these data is included. Multiple electronic databases were scanned, including SciFinder, Mendeley, and PubMed, the latter being the main source of information. Particular attention was paid to the potential of coumarins as an important scaffold in drug design, as well as fluorescent probes for decaging of prodrugs, metal detection, and diagnostic purposes. Herein we do an analysis of the trending topics related to coumarin and its derivatives in the broad field of drug discovery.
Collapse
Affiliation(s)
- Aitor Carneiro
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.C.); (M.J.M.); (E.U.)
| | - Maria João Matos
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.C.); (M.J.M.); (E.U.)
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua Campo Alegre 687, 4169-007 Porto, Portugal
| | - Eugenio Uriarte
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.C.); (M.J.M.); (E.U.)
- Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, 7500912 Santiago, Chile
| | - Lourdes Santana
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.C.); (M.J.M.); (E.U.)
| |
Collapse
|
22
|
Shi L, Bao Y, Zhang Y, Zhang C, Zhang G, Dong C, Shuang S. Orange emissive carbon nanodots for fluorescent and colorimetric bimodal discrimination of Cu2+ and pH. Analyst 2021; 146:1907-1914. [DOI: 10.1039/d0an02243h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have facilely synthesized orange emissive carbon nanodots (O-CDs) via a hydrothermal method using citric acid and 5-aminosalicylic acid.
Collapse
Affiliation(s)
- Lihong Shi
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- PR China
| | - Yuejing Bao
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- PR China
| | - Yan Zhang
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- PR China
| | - Caihong Zhang
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- PR China
| | - Guomei Zhang
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- PR China
| | - Chuan Dong
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- PR China
| | - Shaomin Shuang
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- PR China
| |
Collapse
|
23
|
Naghdi T, Faham S, Mahmoudi T, Pourreza N, Ghavami R, Golmohammadi H. Phytochemicals toward Green (Bio)sensing. ACS Sens 2020; 5:3770-3805. [PMID: 33301670 DOI: 10.1021/acssensors.0c02101] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Because of numerous inherent and unique characteristics of phytochemicals as bioactive compounds derived from plants, they have been widely used as one of the most interesting nature-based compounds in a myriad of fields. Moreover, a wide variety of phytochemicals offer a plethora of fascinating optical and electrochemical features that pave the way toward their development as optical and electrochemical (bio)sensors for clinical/health diagnostics, environmental monitoring, food quality control, and bioimaging. In the current review, we highlight how phytochemicals have been tailored and used for a wide variety of optical and electrochemical (bio)sensing and bioimaging applications, after classifying and introducing them according to their chemical structures. Finally, the current challenges and future directions/perspective on the optical and electrochemical (bio)sensing applications of phytochemicals are discussed with the goal of further expanding their potential applications in (bio)sensing technology. Regarding the advantageous features of phytochemicals as highly promising and potential biomaterials, we envisage that many of the existing chemical-based (bio)sensors will be replaced by phytochemical-based ones in the near future.
Collapse
Affiliation(s)
- Tina Naghdi
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, Tehran 14335-186, Iran
| | - Shadab Faham
- Chemometrics Laboratory, Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj 66177-15175, Iran
| | - Tohid Mahmoudi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
| | - Nahid Pourreza
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6153753843, Iran
| | - Raouf Ghavami
- Chemometrics Laboratory, Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj 66177-15175, Iran
| | - Hamed Golmohammadi
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, Tehran 14335-186, Iran
| |
Collapse
|
24
|
Chakraborty N, Chakraborty A, Das S. Hydrazone derivative of 2-hydroxyquinoline-3-carbaldehyde: an efficient anionic and cationic sensor. CAN J CHEM 2020. [DOI: 10.1139/cjc-2020-0108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A hydrazone (1) based on 2-hydroxyquinoline-3-carbaldehyde was synthesized and its anion and cation detection ability were studied. It could detect both fluoride in acetonitrile selectively among anions and copper ions in semiaqueous medium among cations. The addition of fluoride ion to the acetonitrile solution of the receptor produced a sharp colour change from light yellow to bluish green. The corresponding UV–vis measurements showed a red shift of the band of receptor 1 for fluoride and a blue shift of the band for copper ions. The fluorescence intensity of the receptor 1 got quenched with both fluoride and copper ions. The detection limits for both the ions are in order of micromolar level. The practical applications of fluoride detection were extended to oral care products.
Collapse
Affiliation(s)
| | - Arijit Chakraborty
- Department of Chemistry, Acharya B N Seal College, Cooch Behar, West Bengal 730 161, India
| | - Suman Das
- Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| |
Collapse
|
25
|
A Rare Natural Benzo[ k, l]xanthene as a Turn-Off Fluorescent Sensor for Cu 2+ Ion. Int J Mol Sci 2020; 21:ijms21186933. [PMID: 32967305 PMCID: PMC7555586 DOI: 10.3390/ijms21186933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/28/2022] Open
Abstract
Rapid and efficient analyses of copper ions are crucial to providing key information for Cu2+ in living cells because of their biological importance. In this study, we reported one new turn-off fluorescent sensor for Cu2+ with a benzo[k,l]xanthene core, which served as an efficient cation sensor for copper ion over a wide range of other cations (Na+, K+, Ag+, Hg2+, Cd2+, Co2+, Ni2+, Zn2+, Mg2+, and Fe3+) owing to the catechol group in the aromatic core. The sensor showed selectivity for Cu2+ over other ions; the logKβ for Cu2+ binding to compound 1 had a value of 13.265. In the presence of Cu2+, sensor 1 provided significant fluorescence decrement; Co2+, and Ni2+ caused a fluorescence decrement when employed at a higher concentration than Cu2+, while Na+, K+, Hg2+, Cd2+, Zn2+, and Mg2+ metal ions produced only minor changes in fluorescence intensity. Fluorescence experiments demonstrate that compound 1 may have an application as a fluorescent probe for detecting Cu2+ with a limit of detection of 0.574 µM.
Collapse
|
26
|
SAVRAN T, KARAGÖZ A, KARUK ELMAS ŞN, AYDIN D, ÖZEN F, KORAN K, ARSLAN FN, GÖRGÜLÜ AO, YILMAZ İ. Fluorescent sensing platform for low-cost detection of Cu2+ by coumarin derivative: DFT calculation and practical application in herbal and black tea samples. Turk J Chem 2020; 44:1148-1163. [PMID: 33488219 PMCID: PMC7751904 DOI: 10.3906/kim-2004-63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/26/2020] [Indexed: 11/03/2022] Open
Abstract
A fluorogenic probe based on a coumarin-derivative for Cu2+ sensing in CH3CN/H2O media (v/v, 95/5, 5.0 μM) was developed and applied in real samples. 3-(4-chlorophenyl)-6,7-dihydroxy-coumarin (MCPC) probe was obtained by synthetic methodologies and identified by spectral techniques. The probe MCPC showed remarkable changes with a "turn-off" fluorogenic sensing approach for the monitoring of Cu2+ at 456 nm under an excitation wavelength of 366 nm. The response time of the probe MCPC was founded as only 1 min. The detection limit of the probe MCPC was recorded to be 1.47 nM. The binding constant and possible stoichiometric ratio (1:1) values were determined by Benesi-Hildebrand and Job's plot systems, respectively. The mechanism of the probe MCPC with Cu2+ was further confirmed by ESI-MS and FT-IR analyses, as well as supported by theoretical calculations. Furthermore, the probe MCPC was successfully employed for the practical applications to sense Cu2+ in different herbal and black tea samples. The proposed sensing method was also verified by ICP-OES method.
Collapse
Affiliation(s)
- Tahir SAVRAN
- Department of Chemistry, Kamil Özdağ Science Faculty, Karamanoğlu Mehmetbey University, KaramanTurkey
| | - Abdurrahman KARAGÖZ
- Department of Chemistry, Kamil Özdağ Science Faculty, Karamanoğlu Mehmetbey University, KaramanTurkey
| | - Şükriye Nihan KARUK ELMAS
- Department of Chemistry, Kamil Özdağ Science Faculty, Karamanoğlu Mehmetbey University, KaramanTurkey
| | - Duygu AYDIN
- Department of Chemistry, Kamil Özdağ Science Faculty, Karamanoğlu Mehmetbey University, KaramanTurkey
| | - Furkan ÖZEN
- Department of Mathematics and Science, Faculty of Education, Akdeniz University, AntalyaTurkey
| | - Kenan KORAN
- Department of Chemistry, Faculty of Science, Fırat University, ElazığTurkey
| | - Fatma Nur ARSLAN
- Department of Chemistry, Kamil Özdağ Science Faculty, Karamanoğlu Mehmetbey University, KaramanTurkey
| | | | - İbrahim YILMAZ
- Department of Chemistry, Kamil Özdağ Science Faculty, Karamanoğlu Mehmetbey University, KaramanTurkey
| |
Collapse
|