1
|
Jayasudha P, Manivannan R, Kim W, Son YA. An affordable, field-deployable detecting system for cyanide ion - Investigating applications in real time uses. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 324:124946. [PMID: 39208543 DOI: 10.1016/j.saa.2024.124946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
A highly efficient system that incorporates the instantaneous visualization of the cyanide ion in water was synthesized by keeping the fluorophore system (electron donor) as a julolidine-coumarin conjugate and changing the electron acceptor unit. The probes exhibit a notable color change in normal and UV light. The probe interaction modalities are based on the ICT process. With a detection limit in the nM range, it may preferentially react with cyanide, which is less than the tolerable level of 1.9 μM. According to 1H NMR data, the probes detect cyanide ions by nucleophilic addition reaction mechanism. Furthermore, current probe successfully determines real resources, including cyanide containing cassava powder, sprouted potatoes and various water samples. Besides the test strips, an electronic Arduino device was also employed to detect the cyanide ion. As such, the developed probes exhibit outstanding practical application with respect to the cyanide ion.
Collapse
Affiliation(s)
- Palanisamy Jayasudha
- Department of Advanced Organic Materials Engineering, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 305-764, South Korea
| | - Ramalingam Manivannan
- Department of Advanced Organic Materials Engineering, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 305-764, South Korea
| | - Wonbin Kim
- Department of Advanced Organic Materials Engineering, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 305-764, South Korea
| | - Young-A Son
- Department of Advanced Organic Materials Engineering, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 305-764, South Korea.
| |
Collapse
|
2
|
Okoročenkova J, Filgas J, Khan NM, Slavíček P, Klán P. Thermal Truncation of Heptamethine Cyanine Dyes. J Am Chem Soc 2024; 146:19768-19781. [PMID: 38995720 PMCID: PMC11273355 DOI: 10.1021/jacs.4c02116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024]
Abstract
Cyanine dyes are a class of organic, usually cationic molecules containing two nitrogen centers linked through conjugated polymethine chains. The synthesis and reactivity of cyanine derivatives have been extensively investigated for decades. Unlike the recently described phototruncation process, the thermal truncation (chain shortening) reaction is a phenomenon that has rarely been reported for these important fluorophores. Here, we present a systematic investigation of the truncation of heptamethine cyanines (Cy7) to pentamethine (Cy5) and trimethine (Cy3) cyanines via homogeneous, acid-base-catalyzed nucleophilic exchange reactions. We demonstrate how different substituents at the C3' and C4' positions of the chain and different heterocyclic end groups, the presence of bases, nucleophiles, and oxygen, solvent properties, and temperature affect the truncation process. The mechanism of chain shortening, studied by various analytical and spectroscopic techniques, was verified by extensive ab initio calculation, implying the necessity to model catalytic reactions by highly correlated wave function-based methods. In this study, we provide critical insight into the reactivity of cyanine polyene chains and elucidate the truncation mechanism and methods to mitigate side processes that can occur during the synthesis of cyanine derivatives. In addition, we offer alternative routes to the preparation of symmetrical and unsymmetrical meso-substituted Cy5 derivatives.
Collapse
Affiliation(s)
- Jana Okoročenkova
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5, 625 00 Brno, Czech Republic
- RECETOX,
Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech
Republic
| | - Josef Filgas
- Department
of Physical Chemistry, University of Chemistry
and Technology, Technická 5, 16628 Prague 6, Czech Republic
| | - Nasrulla Majid Khan
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5, 625 00 Brno, Czech Republic
- RECETOX,
Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech
Republic
| | - Petr Slavíček
- Department
of Physical Chemistry, University of Chemistry
and Technology, Technická 5, 16628 Prague 6, Czech Republic
| | - Petr Klán
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5, 625 00 Brno, Czech Republic
- RECETOX,
Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech
Republic
| |
Collapse
|
3
|
Palanisamy J, Gatasheh MK, Hatamleh AA. A reaction based carbazole-indolium conjugate probe for the selective detection of environmentally toxic ions. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2869-2877. [PMID: 38639075 DOI: 10.1039/d4ay00301b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
A nucleophilic addition based chemodosimeter was designed and synthesized with a carbazole donor and an indole acceptor. The addition of a cyanide ion to an electron-deficient indole moiety disrupts the acceptor-donor relationship, resulting in noticeable color shifts and spectrum differences in both the absorption and emission profiles. The design has a D-π-A molecular arrangement. Selectivity was investigated in 90% aqueous DMSO solution of probe CI with various anions such as SCN-, PF6-, NO3-, N3-, I-, HSO4-, CN-, H2PO4-, F-, HS-, ClO4-, Cl-, Br-, and AcO-. An intermolecular charge transfer (ICT) band at 506 nm in the UV-visible spectra vanished and the intensity of emission was quenched at 624 nm upon the addition of CN- ions. These outcomes demonstrate the effective nucleophilic addition of cyanide ions to the electron-deficient indole moiety of the probe, resulting in the formation of a new adduct in which the ICT transition is interrupted when π conjugation is blocked. The Job plot, 1H NMR spectroscopy, and HRMS analysis confirmed the formation of a new product. An outstanding response was shown by paper test strips made using probe molecules for the easy detection of cyanide ions in aqueous solutions. Besides, the probe selectively senses cyanide ions in different water samples.
Collapse
Affiliation(s)
- Jayasudha Palanisamy
- Department of Chemistry, Subramanya College of Arts and Science, Tamilnadu 624618, India.
| | - Mansour K Gatasheh
- Department of Biochemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ashraf Atef Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
4
|
Ghosh P, Karak A, Mahapatra AK. Small-molecule fluorogenic probes based on indole scaffold. Org Biomol Chem 2024; 22:2690-2718. [PMID: 38465421 DOI: 10.1039/d3ob02057f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Indoles are the most versatile organic N-heterocyclic compounds widely present in bioactive natural products and used in different fields such as coordination chemistry, pharmacy, dyes, and medicine, as well as in the biology and polymer industries. More recently, the indole scaffold has been widely used in analytical chemistry for the design and development of small-molecule fluorescent chemosensors in the fields of molecular recognition and molecular imaging. The indole-based chemosensor derivatives contain heteroatoms like N-, O-, and S-, through which they interact with analytes (cations, anions, and neutral species), producing measurable analytical signals that can be used for the fluorimetric and colorimetric detection of different analytes in biological, agricultural and environmental samples. This review focuses on indole-based small-molecule fluorimetric and colorimetric chemosensors for detecting cations, anions, and neutral species in a comprehensive manner. Furthermore, the recognition mechanisms are discussed in detail, which could help researchers design and develop more powerful and efficient fluorescent chemosensors in the near future.
Collapse
Affiliation(s)
- Pintu Ghosh
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, West Bengal, India.
| | - Anirban Karak
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, West Bengal, India.
| | - Ajit Kumar Mahapatra
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, West Bengal, India.
| |
Collapse
|
5
|
Li D, Peng S, Zhou X, Shen L, Yang X, Xu H, Redshaw C, Zhang C, Zhang Q. A Coumarin-Hemicyanine Deep Red Dye with a Large Stokes Shift for the Fluorescence Detection and Naked-Eye Recognition of Cyanide. Molecules 2024; 29:618. [PMID: 38338363 PMCID: PMC10856579 DOI: 10.3390/molecules29030618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
In this study, we synthesized a coumarin-hemicyanine-based deep red fluorescent dye that exhibits an intramolecular charge transfer (ICT). The probe had a large Stokes shift of 287 nm and a large molar absorption coefficient (ε = 7.5 × 105 L·mol-1·cm-1) and is best described as a deep red luminescent fluorescent probe with λem = 667 nm. The color of probe W changed significantly when it encountered cyanide ions (CN-). The absorption peak (585 nm) decreased gradually, and the absorption peak (428 nm) increased gradually, so that cyanide (CN-) could be identified by the naked eye. Moreover, an obvious fluorescence change was evident before and after the reaction under irradiation using 365 nm UV light. The maximum emission peak (667 nm) decreased gradually, whilst the emission peak (495 nm) increased gradually, which allowed for the proportional fluorescence detection of cyanide (CN-). Using fluorescence spectrometry, the fluorescent probe W could linearly detect CN- over the concentration range of 1-9 μM (R2 = 9913, RSD = 0.534) with a detection limit of 0.24 μM. Using UV-Vis spectrophotometry, the linear detection range for CN- was found to be 1-27 μM (R2 = 0.99583, RSD = 0.675) with a detection limit of 0.13 μM. The sensing mechanism was confirmed by 1H NMR spectroscopic titrations, 13C NMR spectroscopy, X-ray crystallographic analysis and HRMS. The recognition and detection of CN- by probe W was characterized by a rapid response, high selectivity, and high sensitivity. Therefore, this probe provides a convenient, effective and economical method for synthesizing and detecting cyanide efficiently and sensitively.
Collapse
Affiliation(s)
- Dongmei Li
- School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, China; (D.L.); (S.P.); (X.Z.); (L.S.); (X.Y.); (C.Z.)
| | - Senlin Peng
- School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, China; (D.L.); (S.P.); (X.Z.); (L.S.); (X.Y.); (C.Z.)
| | - Xu Zhou
- School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, China; (D.L.); (S.P.); (X.Z.); (L.S.); (X.Y.); (C.Z.)
| | - Lingyi Shen
- School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, China; (D.L.); (S.P.); (X.Z.); (L.S.); (X.Y.); (C.Z.)
| | - Xianjiong Yang
- School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, China; (D.L.); (S.P.); (X.Z.); (L.S.); (X.Y.); (C.Z.)
| | - Hong Xu
- School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, China; (D.L.); (S.P.); (X.Z.); (L.S.); (X.Y.); (C.Z.)
| | - Carl Redshaw
- Chemistry, School of Natural Sciences, University of Hull, Cottingham Road, Hull HU6 7RX, UK;
| | - Chunlin Zhang
- School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, China; (D.L.); (S.P.); (X.Z.); (L.S.); (X.Y.); (C.Z.)
| | - Qilong Zhang
- School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, China; (D.L.); (S.P.); (X.Z.); (L.S.); (X.Y.); (C.Z.)
| |
Collapse
|
6
|
Kitaw SL, Birhan YS, Tsai HC. Plasmonic surface-enhanced Raman scattering nano-substrates for detection of anionic environmental contaminants: Current progress and future perspectives. ENVIRONMENTAL RESEARCH 2023; 221:115247. [PMID: 36640935 DOI: 10.1016/j.envres.2023.115247] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/26/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Surface-enhanced Raman scattering spectroscopy (SERS) is a powerful technique of vibrational spectroscopy based on the inelastic scattering of incident photons by molecular species. It has unique properties such as ultra-sensitivity, selectivity, non-destructivity, speed, and fingerprinting properties for analytical and sensing applications. This enables SERS to be widely used in real-world sample analysis and basic plasmonic mechanistic studies. However, the desirable properties of SERS are compromised by the high cost and low reproducibility of the signals. The development of multifunctional, stable and reusable nano-engineered SERS substrates is a viable solution to circumvent these drawbacks. Recently, plasmonic SERS active nano-substrates with various morphologies have attracted the attention of researchers due to promising properties such as the formation of dense hot spots, additional stability, tunable and controlled morphology, and surface functionalization. This comprehensive review focused on the current advances in the field of SERS active nanosubstrates suitable for the detection and quantification of anionic environmental pollutants. The common fabrication methods, including the techniques for morphological adjustments and surface modification, substrate categories, and the design of nanotechnologically fabricated plasmonic SERS substrates for anion detection are systematically presented. Here, the need for the design, synthesis, and functionalization of SERS nano-substrates for anions of great environmental importance is explained in detail. In addition, the broad categories of SERS nano-substrates, namely colloid-based SERS substrates and solid-support SERS substrates are discussed. Moreover, a brief discussion of SERS detection of certain anionic pollutants in the environment is presented. Finally, the prospects in the fabrication and commercialization of pilot-scale handheld SERS sensors and the construction of smart nanosubstrates integrated with novel amplifying materials for the detection of anions of environmental and health concern are proposed.
Collapse
Affiliation(s)
- Sintayehu Leshe Kitaw
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 106, Taiwan, ROC
| | - Yihenew Simegniew Birhan
- Department of Chemistry, College of Natural and Computational Sciences, Debre Markos University, P.O. Box 269, Debre Markos, Ethiopia
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 106, Taiwan, ROC; Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei, 106, Taiwan, ROC; R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan, 320, Taiwan, ROC.
| |
Collapse
|
7
|
Fu M, Li L, Yang D, Tu Y, Yan J. Colorimetric detections of iodide and mercuric ions based on a regulation of an Enzyme-Like activity from gold nanoclusters. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121450. [PMID: 35679739 DOI: 10.1016/j.saa.2022.121450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
A simple colorimetric method was developed for sensitive and selective detections of I- and Hg2+. Histidine stabilized gold nanoclusters (His-AuNCs) were synthesized and catalyzed the oxidation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to a blue product. As a strong ligand toward gold, iodide (I-) attached to the surface of the His-AuNCs and significantly enhanced the oxidase-like activity of the His-AuNCs. Based on this enhancement, a sensitive colorimetric response toward I- was obtained. Furthermore, the strong interaction between Hg2+ and I- was adopted for an indirect Hg2+ detection. Under the optimal conditions, the platform presented high selectivity for the determinations of I- and Hg2+ in the ranges 0.02-1 µM and 0.05-0.8 µM, with detection limits as 3.3 nM and 8 nM respectively. This colorimetric assay was successfully applied for analysis of real samples.
Collapse
Affiliation(s)
- Meiling Fu
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Lan Li
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Deyuan Yang
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Yifeng Tu
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Jilin Yan
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou 215123, China.
| |
Collapse
|