1
|
Zhang Z, Xia Y, Li X, Zhang Q, Wu Y, Cui C, Liu J, Liu W. Arginine-solubilized lipoic acid-induced β-sheets of silk fibroin-strengthened hydrogel for postoperative rehabilitation of breast cancer. Bioact Mater 2024; 40:667-682. [PMID: 39257958 PMCID: PMC11386050 DOI: 10.1016/j.bioactmat.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 09/12/2024] Open
Abstract
Breast cancer is the most common cancer among women worldwide, and adjuvant radiotherapy (RT) following tumor removal is one of the most commonly used treatments for breast cancer. However, the high risk of tumor recurrence and inevitable radiation skin injury after RT remain fatal problems, seriously challenging the patient's postoperative rehabilitation. Herein, a multifunctional poly (lipoic acid)-based hydrogel is constructed through one-step heating the mixture of α-lipoic acid (LA)/arginine (Arg)/silk fibroin (SF), without introducing any non-natural molecules. The multiple synergistic interactions among LA, Arg, and SF not only enhance the solubilization of LA in aqueous systems but also stabilize poly(lipoic acid) through strong salt bridge hydrogen bonds and ionic hydrogen bonds. Intriguingly, the LA-based surfactant induced β-sheet transformation of SF can further modulate the bulk strength of the hydrogel. Regulating the content of LA in hydrogels not only allows efficient control of hydrogel bioactivity but also enables the evolution of hydrogels from injectable forms to adhesive patches. Based on the different biological activities and forms of hydrogels, they can be implanted internally or applied externally on the mice's skin, achieving simultaneous prevention of tumor recurrence post-surgery and assistance in treating radiation-induced skin damage after radiotherapy.
Collapse
Affiliation(s)
- Zhuodan Zhang
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300352, China
| | - Yi Xia
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Xinyi Li
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Qian Zhang
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300352, China
| | - Yuanhao Wu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Chunyan Cui
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300352, China
- State Key Laboratory of Molecular Engineering of Polymers (Fudan University), China
| | - Jianfeng Liu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Wenguang Liu
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300352, China
| |
Collapse
|
2
|
Moreno-Tortolero RO, Luo Y, Parmeggiani F, Skaer N, Walker R, Serpell LC, Holland C, Davis SA. Molecular organization of fibroin heavy chain and mechanism of fibre formation in Bombyx mori. Commun Biol 2024; 7:786. [PMID: 38951579 PMCID: PMC11217467 DOI: 10.1038/s42003-024-06474-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024] Open
Abstract
Fibroins' transition from liquid to solid is fundamental to spinning and underpins the impressive native properties of silk. Herein, we establish a fibroin heavy chain fold for the Silk-I polymorph, which could be relevant for other similar proteins, and explains mechanistically the liquid-to-solid transition of this silk, driven by pH reduction and flow stress. Combining spectroscopy and modelling we propose that the liquid Silk-I fibroin heavy chain (FibH) from the silkworm, Bombyx mori, adopts a newly reported β-solenoid structure. Similarly, using rheology we propose that FibH N-terminal domain (NTD) templates reversible higher-order oligomerization driven by pH reduction. Our integrated approach bridges the gap in understanding FibH structure and provides insight into the spatial and temporal hierarchical self-assembly across length scales. Our findings elucidate the complex rheological behaviour of Silk-I, solutions and gels, and the observed liquid crystalline textures within the silk gland. We also find that the NTD undergoes hydrolysis during standard regeneration, explaining key differences between native and regenerated silk feedstocks. In general, in this study we emphasize the unique characteristics of native and native-like silks, offering a fresh perspective on our fundamental understanding of silk-fibre production and applications.
Collapse
Affiliation(s)
- Rafael O Moreno-Tortolero
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
- Max Planck-Bristol Centre for Minimal Biology, University of Bristol, Bristol, BS8 1TS, UK.
| | - Yijie Luo
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
- School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Fabio Parmeggiani
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
- School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Ave, Cardiff, CF10 3NB, UK
| | - Nick Skaer
- Orthox Ltd, Milton Park, 66 Innovation Drive, Abingdon, OX14 4RQ, UK
| | - Robert Walker
- Orthox Ltd, Milton Park, 66 Innovation Drive, Abingdon, OX14 4RQ, UK
| | - Louise C Serpell
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Chris Holland
- Department of Materials Science and Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - Sean A Davis
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| |
Collapse
|
3
|
Tai MR, Ji HW, Chen JP, Liu XF, Song BB, Zhong SY, Rifai A, Nisbet DR, Barrow CJ, Williams RJ, Li R. Biomimetic triumvirate nanogel complexes via peptide-polysaccharide-polyphenol self-assembly. Int J Biol Macromol 2023; 251:126232. [PMID: 37562478 DOI: 10.1016/j.ijbiomac.2023.126232] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/03/2023] [Accepted: 08/06/2023] [Indexed: 08/12/2023]
Abstract
Self-assembled peptide and polysaccharide nanogels are excellent candidates for bioactive delivery vectors. However, there are still significant challenges in the application of nanogels as delivery tools for bioactive elements. This study aims to deliver, and control the release of a hydrophobic bioactive flavonoid hesperidin. Using the self-assembling peptide (SAP) Fmoc-FRGDF, extracellular matrix mimicking nanofibrils were fabricated, which were decorated and bolstered with immunomodulatory polysaccharide strands of fucoidan and infused with hesperidin. The mechanical properties, secondary structure, and microscopic morphologies of the composite hydrogels were characterized using rheometer, FTIR, XRD, and TEM, etc. The encapsulation efficiency (EE) and release behavior of hesperidin were determined. Coassembly of the SAP with fucoidan improved the mechanical properties (from 9.54 Pa of Fmoc-FRGDF hydrogel to 7735 Pa of coassembly hydrogel at 6 mg/mL fucoidan concentration), formed thicker nanofibril bundles at 4 and 6 mg/mL fucoidan concentration, improved the EE of hesperidin from 72.86 % of Fmoc-FRGDF hydrogel to over 90 % of coassembly hydrogels, and showed effectively controlled release of hesperidin in vitro. Intriguingly, the first order kinetic model predicted an enhanced hydrogel retention and release of hesperidin. This study revealed a new approach for bioengineered nanogels that could be used to stabilize and release hydrophobic payloads.
Collapse
Affiliation(s)
- Min-Rui Tai
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China
| | - Hong-Wu Ji
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China
| | - Jian-Ping Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China
| | - Xiao-Fei Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China
| | - Bing-Bing Song
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China
| | - Sai-Yi Zhong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China.
| | - Aaqil Rifai
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, VIC 3217, Australia; IMPACT, School of Medicine, Deakin University, Waurn Ponds, VIC 3217, Australia; The Graeme Clark Institute, The University of Melbourne, Melbourne, Australia
| | - David R Nisbet
- The Graeme Clark Institute, The University of Melbourne, Melbourne, Australia; Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Australia; Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne, Australia
| | - Colin J Barrow
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, VIC 3217, Australia
| | - Richard J Williams
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, VIC 3217, Australia; IMPACT, School of Medicine, Deakin University, Waurn Ponds, VIC 3217, Australia; The Graeme Clark Institute, The University of Melbourne, Melbourne, Australia
| | - Rui Li
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China.
| |
Collapse
|