1
|
Chambial P, Thakur N, Bhukya PL, Subbaiyan A, Kumar U. Frontiers in superbug management: innovating approaches to combat antimicrobial resistance. Arch Microbiol 2025; 207:60. [PMID: 39953143 DOI: 10.1007/s00203-025-04262-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/22/2025] [Accepted: 01/31/2025] [Indexed: 02/17/2025]
Abstract
Anti-microbial resistance (AMR) is a global health issue causing significant mortality and economic burden. Pharmaceutical companies' discontinuation of research hinders new agents, while MDR pathogens or "superbugs" worsen the problem. Superbugs pose a threat to common infections and medical procedures, exacerbated by limited antibiotic development and rapid antibiotic resistance. The rising tide of antimicrobial resistance threatens to undermine progress in controlling infectious diseases. This review examines the global proliferation of AMR, its underlying mechanisms, and contributing factors. The study explores various methodologies, emphasizing the significance of precise and timely identification of resistant strains. We discuss recent advancements in CRISPR/Cas9, nanoparticle technology, light-based techniques, and AI-powered antibiogram analysis for combating AMR. Traditional methods often fail to effectively combat multidrug-resistant bacteria, as CRISPR-Cas9 technology offers a more effective approach by cutting specific DNA sequences, precision targeting and genome editing. AI-based smartphone applications for antibiogram analysis in resource-limited settings face challenges like internet connectivity, device compatibility, data quality, energy consumption, and algorithmic limitations. Additionally, light-based antimicrobial techniques are increasingly being used to effectively kill antibiotic-resistant microbial species and treat localized infections. This review provides an in-depth overview of AMR covering epidemiology, evolution, mechanisms, infection prevention, control measures, antibiotic access, stewardship, surveillance, challenges and emerging non-antibiotic therapeutic approaches.
Collapse
Affiliation(s)
- Priyanka Chambial
- Department of Biosciences (UIBT), Chandigarh University, NH-05, Ludhiana - Chandigarh State Hwy, Sahibzada Ajit Singh Nagar, Punjab, 140413, India
| | - Neelam Thakur
- Department of Zoology, Sardar Patel University, Vallabh Government College Campus, Paddal, Kartarpur, Mandi, Himachal Pradesh, 175001, India.
| | - Prudhvi Lal Bhukya
- Rodent Experimentation Facility, ICMR-National Animal Facility Resource Facility for Biomedical Research, Genome Valley, Shamirpet, Hyderabad, Telangana, 500101, India
| | - Anbazhagan Subbaiyan
- Rodent Experimentation Facility, ICMR-National Animal Facility Resource Facility for Biomedical Research, Genome Valley, Shamirpet, Hyderabad, Telangana, 500101, India
| | - Umesh Kumar
- Department of Biosciences, IMS Ghaziabad University Courses Campus, NH-09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, 201015, India.
| |
Collapse
|
2
|
Moawad R, Abdallah Y, Mohany M, Al-Rejaie SS, Djurasevic S, Ramadan MF, Mousa AB. Biosynthesis and health promoting traits of green synthesized cobalt oxide nanoparticles. Sci Rep 2025; 15:727. [PMID: 39753648 PMCID: PMC11698730 DOI: 10.1038/s41598-024-82679-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/09/2024] [Indexed: 01/06/2025] Open
Abstract
Nanomedical applications have increased significantly. This work aimed to fabricate and characterize cobalt oxide nanoparticles (CoOnps) synthesized biologically via aqueous Alhagi maurorum extract and evaluate their cytotoxic and antimicrobial impacts. Green-synthesized CoOnps were prepared and analyzed using UV-Vis spectrophotometer UV-vis, Scanning electron microscopy (SEM), Transmission electron microscopy TEM, Energy dispersive X-ray analysis EDAX, Fourier transform infrared, FTIR, and X-ray diffraction (XRD). In vitro traits of green-synthesized CoOnps were studied on ovarian cancer cells (SKOV3) using a Sulforhodamine B (SRB) method. The cytotoxic effect and IC50 were estimated. Moreover, concentrations of 10, 30, 40, 70, 100, 200, 300, 400 and 500 μg/mL CoOnps were applied to investigate their antimicrobial effect against Listeria, Staphylococcus aureus and Streptococcus as gram +ve pathogenic bacteria, Bifidobacterium bifidum 2203, Bifidobacterium bifidum LMG 10,645, Bifidobacterium breve LMC 017, Bifidobacterium angulatum 2238 and Bifidobacterium longum ATCC 15,707 as probiotics, E. coli as gram -ve bacterial model and yeast strain Candida albicans. CoOnps showed anti-ovarian cancer effects at 24.02 μg/mL. Furthermore, it exerted antimicrobial activity versus Listeria, Streptococcus, S. aureus, and E. coli were 31.66 ± 0.88, 24.33 ± 2.08, 25.66 ± 0.33, and 33.00 ± 6.08; however, they did not suppress the growth of Candida albicans and all tested Bifidobacterial strains up to concentrations of 500 μg/mL with significant difference compared to all concentrations p < 0.05. Green synthesis of CoOnps is a low-cost, eco-friendly and easily prepared method. Its impressive features as cytotoxic SKOV3, a cell line ovarian cancer and antibacterial effect for some gram +ve and -ve bacteria, besides maintaining probiotics, could candidate them as competitive agents for medical, pharmacological, agricultural and food applications.
Collapse
Affiliation(s)
- Raghda Moawad
- Dairy Department, Faculty of Agriculture, Minia University, Minia, 61519, Egypt
| | - Yasmine Abdallah
- Plant Pathology Department, Faculty of Agriculture, Minia University, Minia, 61519, Egypt
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, 11451, Riyadh, Saudi Arabia
| | - Salim S Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, 11451, Riyadh, Saudi Arabia
| | - Sinisa Djurasevic
- University of Belgrade, Faculty of Biology, Studentski trg 16, 11158, Belgrade 118, Serbia
| | - Mohamed Fawzy Ramadan
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, P.O. Box 7067, 21955, Makkah, Saudi Arabia.
| | - Ahmed Bakr Mousa
- Obstetrics and Gynaecology Department, Faculty of Medicine, Minia University, Minia, Egypt
| |
Collapse
|
3
|
Kedves A, Haspel H, Yavuz Ç, Kutus B, Kónya Z. A comparative study on the chronic responses of titanium dioxide nanoparticles on aerobic granular sludge and algal-bacterial granular sludge processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-35581-z. [PMID: 39562434 DOI: 10.1007/s11356-024-35581-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024]
Abstract
The chronic effects of titanium dioxide nanoparticles (TiO2 NPs) on aerobic granular sludge (AGS) and algal-bacterial granular sludge (ABGS) was examined in this study. Sequencing batch bioreactors (SBRs) and photo sequencing batch bioreactors (PSBRs) were operated with synthetic wastewater containing 0, 1, 5, 10, 20, 30, and 50 mg L-1 TiO2 NPs for 10 days. Nanoparticles at concentrations of 1 and 5 mg L-1 did not impact nutrient removal but led to an increase in extracellular polymeric substances (EPSs), primarily in protein (PN). With increasing nanoparticle concentration, the negative effect became more pronounced, mainly in the AGS SBRs. At 50 mg L-1 TiO2, chemical oxygen demand (COD), ammonia-nitrogen (NH3-N), and phosphorus (PO43-) removal decreased by 20.9%, 12.2%, and 35.1% in AGS, respectively, while in ABGS, they reached only 13.4%, 5.7%, and 14.2%. ABGS exhibited steady-state nutrient removal at 30 and 50 mg L-1 TiO2 NPs after around 5 days. The higher microbial activity and EPS content in the sludge, coupled with the symbiotic relationship between algae and bacteria, contributed to the higher tolerance of ABGS to nanoparticles. Finally, although nanoparticles reduced biomass in both types of bioreactors, the accumulation of TiO2 NPs in the sludge, confirmed by Energy-dispersive X-ray spectroscopy analysis, and the absence of detectable titanium concentrations in the effluent wastewater, measured by Inductively-coupled plasma mass spectrometry, may be attributed to the specific operational conditions of this study, including the relatively short operation period (10 days) and high initial MLSS concentration (6 g L-1).
Collapse
Affiliation(s)
- Alfonz Kedves
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary.
| | - Henrik Haspel
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
- HUN-REN Reaction Kinetics and Surface Chemistry Research Group, Szeged, Hungary
| | - Çağdaş Yavuz
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Bence Kutus
- Department of Molecular and Analytical Chemistry, University of Szeged, Szeged, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
- HUN-REN Reaction Kinetics and Surface Chemistry Research Group, Szeged, Hungary
| |
Collapse
|
4
|
Sultana S, Ashwini BS, Ansari MA, Alomary MN, Jamous YF, Ravikiran T, Niranjana SR, Begum MY, Siddiqua A, Lakshmeesha TR. Catharanthus roseus-assisted bio-fabricated zinc oxide nanoparticles for promising antibacterial potential against Klebsiella pneumoniae. Bioprocess Biosyst Eng 2024; 47:1259-1269. [PMID: 38526617 DOI: 10.1007/s00449-024-03001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/13/2024] [Indexed: 03/27/2024]
Abstract
This study emphasized on the synthesis of zinc oxide nanoparticles (ZnO NPs) in an environmentally friendly manner from the extract of Catharanthus roseus leaves and its antibacterial assessment against the pneumonia-causing pathogen Klebsiella pneumoniae. This simple and convenient phytosynthesis approach is found to be beneficial over conventional methods, wherein plants serve as excellent reducing, capping, and stabilizing agents that enables the formation of ZnO NPs without the use of harmful chemicals. The formation of ZnO NPs was confirmed through several characterization techniques such as UV-visible spectroscopy, XRD, FT-IR, SEM, HR-TEM, and EDX. XRD analysis revealed high polycrystallinity with crystallite size of approximately 13 nm. SEM and HR-TEM revealed the hexagonal structure of ZnO NPs with the particle size range of 20-50 nm. The EDX shows the elemental purity without any impurity. Furthermore, the antibacterial efficacy by the technique of disc diffusion exhibited clear inhibition zones in ZnO NPs-treated discs. In addition, 125 µg/mL of ZnO NP concentration showed minimum inhibition by the microbroth dilution method. The potent inhibitory activity was further validated with trypan blue dye exclusion and fluorescence microscopy. Finally, SEM examination confirmed the efficient antibacterial potential of ZnO NPs through disruption of the intact morphology of Klebsiella pneumoniae.
Collapse
Affiliation(s)
- Sumreen Sultana
- Department of Microbiology and Biotechnology, Bangalore University, Jnana Bharathi Campus, Bengaluru, 560056, India
| | - Bagepalli Shivaram Ashwini
- Department of Microbiology, Shri Atal Bihari Vajpayee Medical College & Research Institute, Bengaluru, 560001, India
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia.
| | - Mohammad N Alomary
- Advanced Diagnostic and Therapeutic Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| | - Yahya F Jamous
- Vaccine and Bioprocessing Center, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| | - Tekupalli Ravikiran
- Department of Microbiology and Biotechnology, Bangalore University, Jnana Bharathi Campus, Bengaluru, 560056, India
| | | | - M Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Ayesha Siddiqua
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | | |
Collapse
|
5
|
Tahir H, Rashid F, Ali S, Summer M, Afzal M. Synthesis, Characterization, Phytochemistry, and Therapeutic Potential of Azadirachta indica Conjugated Silver Nanoparticles: A Comprehensive Study on Antidiabetic and Antioxidant Properties. Biol Trace Elem Res 2024:10.1007/s12011-024-04293-3. [PMID: 38985237 DOI: 10.1007/s12011-024-04293-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024]
Abstract
Nanotechnology has become a major topic of study, particularly in the medical and health domains. Because nanomedicine has a higher recovery rate than other conventional drugs, it has attracted more attention. Green synthesis is the most efficient and sustainable method of creating nanoparticles. The current work used ultraviolet-visible spectroscopy, Fourier-transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray, and X-ray diffraction to thoroughly characterize the synthesized silver nanoparticles (AgNPs) from Azadirachta indica leaf extract. Characterization confirmed the synthesis of the AgNPs along with the possible linkage of the phytochemicals with the silver as well as the quantitative analysis and nature of NPs. The antioxidant activity of AgNPs and neem extract was measured by the 2,2-diphenyl-1-picrylhydrazyl assay using various concentrations (20, 40, 60, 80, and 100 µg/ml). Additionally, using diabetic mice that had been given alloxan, the in vivo antidiabetic potential of biosynthesized AgNPs was assessed. Eight groups of mice were used to assess the antidiabetic activity: one control group and seven experimental groups (untreated, extract-treated, AgNPs at low and high doses, standard drug, low dose of AgNPs + drug, and high dose of AgNPs + drug). At days 0, 7, 14, 21, and 28, blood glucose levels and body weight were measured. After 28 days, the mice were dissected, and the liver, kidney, and pancreas were examined histologically. The results depicted that the AgNPs showed higher (significant) radical scavenging activity (IC50 = 35.2 µg/ml) than extract (IC50 = 93.0 µg/ml) and ascorbic acid (IC50 = 64.6 µg/ml). The outcomes demonstrated that biosynthesized AgNPs had a great deal of promise as an antidiabetic agent and exhibited remarkable effects in diabetic mice given AgNPs, extract, and drug. Remarkable improvement in the body weight and blood glucose level of mice treated with high doses of AgNPs and drug was observed. The body weight and blood glucose level of diabetic mice treated with a high dose of AgNPs + standard drug showed significant improvement, going from 28.7 ± 0.2 to 35.6 ± 0.3 g and 248 ± 0.3 to 109 ± 0.1 mg/dl, respectively. Significant regeneration was also observed in the histomorphology of the kidney, liver's central vein, and islets of Langerhans after treatment with biosynthesized AgNPs. Diabetic mice given a high dose of AgNPs and drug displayed architecture of the kidney, liver, and pancreas that was nearly identical to that of the control group. According to the current research, biosynthesized AgNPs have strong antioxidant and antidiabetic potential and may eventually provide a less expensive option for the treatment of diabetes.
Collapse
Affiliation(s)
- Hunaiza Tahir
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| | - Farzana Rashid
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan.
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan.
| | - Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan
| | - Misha Afzal
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| |
Collapse
|