1
|
Association between vasectomy and risk of prostate cancer: a meta-analysis. Prostate Cancer Prostatic Dis 2021; 24:962-975. [PMID: 33927357 DOI: 10.1038/s41391-021-00368-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/12/2021] [Accepted: 04/12/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND The debate over the association between vasectomy and prostate cancer has been lasted about 40 years and there is no sign of stopping. In the present study, we aimed to evaluate whether vasectomy is associated with prostate cancer based on the most comprehensive and up-to-date evidence available. METHODS The PubMed, Cochrane Library, and EMBASE databases were systematically searched inception to March 14, 2021 without year or language restriction. Multivariable adjusted risk ratios (RRs) were used to assess each endpoint. Risk of bias was assessed using the Newcastle-Ottawa scale. RESULTS A total of 58 studies involving 16,989,237 participants fulfilled inclusion criteria. There was significant association of vasectomy with risk of any prostate cancer (risk ratio, 1.18, 95% CI, 1.07-1.31). Association between vasectomy and advanced prostate cancer (risk ratio, 1.06, 95% CI, 1.01-1.12), low-grade prostate cancer (risk ratio, 1.06, 95% CI, 1.02-1.10), and intermediate-grade prostate cancer (risk ratio, 1.12, 95% CI, 1.03-1.22) were significant. There was no significant association between vasectomy and prostate cancer-specific mortality (risk ratio, 1.01, 95% CI, 0.93-1.10). CONCLUSIONS This study found that vasectomy was associated with the risk of any prostate cancer and advanced prostate cancer. From the current evidence, patients should be fully informed of the risk of prostate cancer before vasectomy.
Collapse
|
2
|
Chen Y, Liu X, Yu Y, Yu C, Yang L, Lin Y, Xi T, Ye Z, Feng Z, Shen B. PCaLiStDB: a lifestyle database for precision prevention of prostate cancer. Database (Oxford) 2020; 2020:baz154. [PMID: 31950190 PMCID: PMC6966110 DOI: 10.1093/database/baz154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/30/2019] [Accepted: 12/13/2019] [Indexed: 02/05/2023]
Abstract
The interaction between genes, lifestyles and environmental factors makes the genesis and progress of prostate cancer (PCa) very heterogeneous. Positive lifestyle is important to the prevention and controlling of PCa. To investigate the relationship between PCa and lifestyle at systems level, we established a PCa related lifestyle database (PCaLiStDB) and collected the PCa-related lifestyles including foods, nutrients, life habits and social and environmental factors as well as associated genes and physiological and biochemical indexes together with the disease phenotypes and drugs. Data format standardization was implemented for the future Lifestyle-Wide Association Studies of PCa (PCa_LWAS). Currently, 2290 single-factor lifestyles and 856 joint effects of two or more lifestyles were collected. Among these, 394 are protective factors, 556 are risk factors, 45 are no-influencing factors, 52 are factors with contradictory views and 1977 factors are lacking effective literatures support. PCaLiStDB is expected to facilitate the prevention and control of PCa, as well as the promotion of mechanistic study of lifestyles on PCa. Database URL: http://www.sysbio.org.cn/pcalistdb/.
Collapse
Affiliation(s)
- Yalan Chen
- Center for Systems Biology, Soochow University, Suzhou 215006, China
- Department of Medical Informatics, School of Medicine, Nantong University, Nantong 226001, China
| | - Xingyun Liu
- Center for Systems Biology, Soochow University, Suzhou 215006, China
- Institutes for Systems Genetics, West China Hospital, Sichuan University, No.17 Gaopeng Avenue, Chengdu 610041, China
| | - Yijun Yu
- Department of Medical Informatics, School of Medicine, Nantong University, Nantong 226001, China
| | - Chunjiang Yu
- Center for Systems Biology, Soochow University, Suzhou 215006, China
- School of Nanotechnology, Suzhou Industrial Park Institute of Services Outsourcing, Suzhou 215123, China
| | - Lan Yang
- Center for Systems Biology, Soochow University, Suzhou 215006, China
| | - Yuxin Lin
- Center for Systems Biology, Soochow University, Suzhou 215006, China
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Ting Xi
- Department of Medical Informatics, School of Medicine, Nantong University, Nantong 226001, China
| | - Ziyun Ye
- Department of Medical Informatics, School of Medicine, Nantong University, Nantong 226001, China
| | - Zhe Feng
- Department of Medical Informatics, School of Medicine, Nantong University, Nantong 226001, China
| | - Bairong Shen
- Institutes for Systems Genetics, West China Hospital, Sichuan University, No.17 Gaopeng Avenue, Chengdu 610041, China
| |
Collapse
|
3
|
Hybiak J, Broniarek I, Kiryczyński G, Los LD, Rosik J, Machaj F, Sławiński H, Jankowska K, Urasińska E. Aspirin and its pleiotropic application. Eur J Pharmacol 2019; 866:172762. [PMID: 31669590 DOI: 10.1016/j.ejphar.2019.172762] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/21/2019] [Accepted: 10/25/2019] [Indexed: 12/31/2022]
Abstract
Aspirin (acetylsalicylic acid), the oldest synthetic drug, was originally used as an anti-inflammatory medication. Being an irreversible inhibitor of COX (prostaglandin-endoperoxide synthase) enzymes that produce precursors for prostaglandins and thromboxanes, it has gradually found several other applications. Sometimes these applications are unrelated to its original purpose for example its use as an anticoagulant. Applications such as these have opened opportunities for new treatments. In this case, it has been tested in patients with cardiovascular disease to reduce the risk of myocardial infarct. Its function as an anticoagulant has also been explored in the prophylaxis and treatment of pre-eclampsia, where due to its anti-inflammatory properties, aspirin intake may be used to reduce the risk of colorectal cancer. It is important to always consider both the risks and benefits of aspirin's application. This is especially important for proposed use in the prevention and treatment of neurologic ailments like Alzheimer's disease, or in the prophylaxis of myocardial infarct. In such cases, the decision if aspirin should be applied, and at what dose may be guided by specific molecular markers. In this revived paper, the pleiotropic application of aspirin is summarized.
Collapse
Affiliation(s)
- Jolanta Hybiak
- Department of Pathology, Pomeranian Medical University, Szczecin, Poland.
| | - Izabela Broniarek
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University Poznan, Poland
| | - Gerard Kiryczyński
- Department of Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Laura D Los
- Faculty of Science, University of Manitoba, Winnipeg, Canada
| | - Jakub Rosik
- Department of Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Filip Machaj
- Department of Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Hubert Sławiński
- Wellcome Centre for Human Genetics, University of Oxford, United Kingdom
| | - Kornelia Jankowska
- Department of Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Elżbieta Urasińska
- Department of Pathology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
4
|
Sauer CM, Myran DT, Costentin CE, Zwisler G, Safder T, Papatheodorou S, Mucci LA. Effect of long term aspirin use on the incidence of prostate cancer: A systematic review and meta-analysis. Crit Rev Oncol Hematol 2018; 132:66-75. [PMID: 30447928 DOI: 10.1016/j.critrevonc.2018.09.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Previous studies found divergent effects of aspirin use on prostate cancer incidence, potentially due to studies with short durations of aspirin use and insufficient adjustment for screening. METHODS A systematic review on the association between aspirin use ≥3 years and incident prostate cancer was performed in accordance with the PRISMA and MOOSE criteria. RESULTS In the cohort studies, aspirin use for at least 3 years was associated with a lower incidence rate of prostate cancer (Odds ratio (OR) 0.88, 95% CI 0.80-0.97). No protective association was established for the case-control studies (OR 0.92, 95% CI 0.68-1.23). Subgroup analysis of advanced and aggressive cancers showed a protective association (OR 0.82, 95% CI 0.71-0.94 and OR 0.75, 95% CI 0.61-0.97). CONCLUSION This synthesis of observational studies suggests a potential protective association between long term aspirin use and incident prostate cancer. The current literature is highly heterogenous and suffers from inconsistent aspirin dose definition and measurement.
Collapse
Affiliation(s)
- C M Sauer
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States.
| | - D T Myran
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - C E Costentin
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - G Zwisler
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Health Policy and Management, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - T Safder
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Health Policy and Management, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - S Papatheodorou
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - L A Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| |
Collapse
|
5
|
Hua H, Zhang H, Kong Q, Wang J, Jiang Y. Complex roles of the old drug aspirin in cancer chemoprevention and therapy. Med Res Rev 2018; 39:114-145. [PMID: 29855050 DOI: 10.1002/med.21514] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/04/2018] [Accepted: 05/12/2018] [Indexed: 02/05/2023]
Abstract
The nonsteroidal anti-inflammatory agent aspirin is widely used for preventing and treating cardiovascular and cerebrovascular diseases. In addition, epidemiologic evidences reveal that aspirin may prevent a variety of human cancers, while data on the association between aspirin and some kinds of cancer are conflicting. Preclinical studies and clinical trials also reveal the therapeutic effect of aspirin on cancer. Although cyclooxygenase is a well-known target of aspirin, recent studies uncover other targets of aspirin and its metabolites, such as AMP-activated protein kinase, cyclin-dependent kinase, heparanase, and histone. Accumulating evidence demonstrate that aspirin may act in different cell types, such as epithelial cell, tumor cell, endothelial cell, platelet, and immune cell. Therefore, aspirin acts on diverse hallmarks of cancer, such as sustained tumor growth, metastasis, angiogenesis, inflammation, and immune evasion. In this review, we focus on recent progress in the use of aspirin for cancer chemoprevention and therapy, and integratively analyze the mechanisms underlying the anticancer effects of aspirin and its metabolites. We also discuss mechanisms of aspirin resistance and describe some derivatives of aspirin, which aim to overcome the adverse effects of aspirin.
Collapse
Affiliation(s)
- Hui Hua
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.,Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Hongying Zhang
- Collaborative Innovation Center of Biotherapy, Chengdu, China.,Laboratory of Oncogene, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qingbin Kong
- Collaborative Innovation Center of Biotherapy, Chengdu, China.,Laboratory of Oncogene, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiao Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yangfu Jiang
- Collaborative Innovation Center of Biotherapy, Chengdu, China.,Laboratory of Oncogene, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Leão RRN, Price AJ, James Hamilton R. Germline BRCA mutation in male carriers-ripe for precision oncology? Prostate Cancer Prostatic Dis 2017; 21:48-56. [PMID: 29242595 DOI: 10.1038/s41391-017-0018-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/20/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Prostate cancer (PC) is one of the known heritable cancers with individual variations attributed to genetic factors. BRCA1 and BRCA2 are tumour suppressor genes with crucial roles in repairing DNA and thereby maintaining genomic integrity. Germline BRCA mutations predispose to multiple familial tumour types including PC. METHODS We performed a Pubmed database search along with review of reference lists from prominent articles to capture papers exploring the association between BRCA mtuations and prostate cancer risk and prognosis. Articles were retrieved until May 2017 and filtered for relevance, and publication type. RESULTS We explored familial PC genetics; discussed the discovery and magnitude of the association between BRCA mutations and PC risk and outcome; examined implications of factoring BRCA mutations into PC screening; and discussed the rationale for chemoprevention in this high-risk population. We confirmed that BRCA1/2 mutations confer an up to 4.5-fold and 8.3-fold increased risk of PC, respectively. BRCA2 mutations are associated with an increased risk of high-grade disease, progression to metastatic castration-resistant disease, and 5-year cancer-specific survival rates of 50 to 60%. CONCLUSION Despite the growing body of research on DNA repair genes, deeper analysis is needed to understand the aetiological role of germline BRCA mutations in the natural history of PC. There is a need for awareness to screen for this marker of PC risk. There is similarly an opportunity for structured PC screening programs for BRCA mutation carriers. Finally, further research is required to identify potential chemopreventive strategies for this high-risk subgroup.
Collapse
Affiliation(s)
| | - Aryeh Joshua Price
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Robert James Hamilton
- Urology Division, Department of Surgery, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
7
|
Bhindi B, Wallis CJD, Nayan M, Farrell AM, Trost LW, Hamilton RJ, Kulkarni GS, Finelli A, Fleshner NE, Boorjian SA, Karnes RJ. The Association Between Vasectomy and Prostate Cancer: A Systematic Review and Meta-analysis. JAMA Intern Med 2017; 177:1273-1286. [PMID: 28715534 PMCID: PMC5710573 DOI: 10.1001/jamainternmed.2017.2791] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/07/2017] [Indexed: 12/30/2022]
Abstract
Importance Despite 3 decades of study, there remains ongoing debate regarding whether vasectomy is associated with prostate cancer. Objective To determine if vasectomy is associated with prostate cancer. Data Sources The MEDLINE, EMBASE, Web of Science, and Scopus databases were searched for studies indexed from database inception to March 21, 2017, without language restriction. Study Selection Cohort, case-control, and cross-sectional studies reporting relative effect estimates for the association between vasectomy and prostate cancer were included. Data Extraction and Synthesis Two investigators performed study selection independently. Data were pooled separately by study design type using random-effects models. The Newcastle-Ottawa Scale was used to assess risk of bias. Main Outcomes and Measures The primary outcome was any diagnosis of prostate cancer. Secondary outcomes were high-grade, advanced, and fatal prostate cancer. Results Fifty-three studies (16 cohort studies including 2 563 519 participants, 33 case-control studies including 44 536 participants, and 4 cross-sectional studies including 12 098 221 participants) were included. Of these, 7 cohort studies (44%), 26 case-control studies (79%), and all 4 cross-sectional studies were deemed to have a moderate to high risk of bias. Among studies deemed to have a low risk of bias, a weak association was found among cohort studies (7 studies; adjusted rate ratio, 1.05; 95% CI, 1.02-1.09; P < .001; I2 = 9%) and a similar but nonsignificant association was found among case-control studies (6 studies; adjusted odds ratio, 1.06; 95% CI, 0.88-1.29; P = .54; I2 = 37%). Effect estimates were further from the null when studies with a moderate to high risk of bias were included. Associations between vasectomy and high-grade prostate cancer (6 studies; adjusted rate ratio, 1.03; 95% CI, 0.89-1.21; P = .67; I2 = 55%), advanced prostate cancer (6 studies; adjusted rate ratio, 1.08; 95% CI, 0.98-1.20; P = .11; I2 = 18%), and fatal prostate cancer (5 studies; adjusted rate ratio, 1.02; 95% CI, 0.92-1.14; P = .68; I2 = 26%) were not significant (all cohort studies). Based on these data, a 0.6% (95% CI, 0.3%-1.2%) absolute increase in lifetime risk of prostate cancer associated with vasectomy and a population-attributable fraction of 0.5% (95% CI, 0.2%-0.9%) were calculated. Conclusions and Relevance This review found no association between vasectomy and high-grade, advanced-stage, or fatal prostate cancer. There was a weak association between vasectomy and any prostate cancer that was closer to the null with increasingly robust study design. This association is unlikely to be causal and should not preclude the use of vasectomy as a long-term contraceptive option.
Collapse
Affiliation(s)
- Bimal Bhindi
- Department of Urology, Mayo Clinic, Rochester, Minnesota
| | - Christopher J. D. Wallis
- Division of Urology, Department of Surgery, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Madhur Nayan
- Division of Urology, Department of Surgery, Princess Margaret Hospital, University Health Network, Toronto, Ontario, Canada
| | - Ann M. Farrell
- Mayo Clinic Libraries, Mayo Clinic, Rochester, Minnesota
| | | | - Robert J. Hamilton
- Division of Urology, Department of Surgery, Princess Margaret Hospital, University Health Network, Toronto, Ontario, Canada
| | - Girish S. Kulkarni
- Division of Urology, Department of Surgery, Princess Margaret Hospital, University Health Network, Toronto, Ontario, Canada
| | - Antonio Finelli
- Division of Urology, Department of Surgery, Princess Margaret Hospital, University Health Network, Toronto, Ontario, Canada
| | - Neil E. Fleshner
- Division of Urology, Department of Surgery, Princess Margaret Hospital, University Health Network, Toronto, Ontario, Canada
| | | | | |
Collapse
|
8
|
Live imaging and gene expression analysis in zebrafish identifies a link between neutrophils and epithelial to mesenchymal transition. PLoS One 2014; 9:e112183. [PMID: 25372289 PMCID: PMC4221567 DOI: 10.1371/journal.pone.0112183] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 10/06/2014] [Indexed: 12/18/2022] Open
Abstract
Chronic inflammation is associated with epithelial to mesenchymal transition (EMT) and cancer progression however the relationship between inflammation and EMT remains unclear. Here, we have exploited zebrafish to visualize and quantify the earliest events during epithelial cell transformation induced by oncogenic HRasV12. Live imaging revealed that expression of HRasV12 in the epidermis results in EMT and chronic neutrophil and macrophage infiltration. We have developed an in vivo system to probe and quantify gene expression changes specifically in transformed cells from chimeric zebrafish expressing oncogenic HRasV12 using translating ribosomal affinity purification (TRAP). We found that the expression of genes associated with EMT, including slug, vimentin and mmp9, are enriched in HRasV12 transformed epithelial cells and that this enrichment requires the presence of neutrophils. An early signal induced by HRasV12 in epithelial cells is the expression of il-8 (cxcl8) and we found that the chemokine receptor, Cxcr2, mediates neutrophil but not macrophage recruitment to the transformed cells. Surprisingly, we also found a cell autonomous role for Cxcr2 signaling in transformed cells for both neutrophil recruitment and EMT related gene expression associated with Ras transformation. Taken together, these findings implicate both autocrine and paracrine signaling through Cxcr2 in the regulation of inflammation and gene expression in transformed epithelial cells.
Collapse
|
9
|
Savari S, Vinnakota K, Zhang Y, Sjölander A. Cysteinyl leukotrienes and their receptors: Bridging inflammation and colorectal cancer. World J Gastroenterol 2014; 20:968-977. [PMID: 24574769 PMCID: PMC3921548 DOI: 10.3748/wjg.v20.i4.968] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 11/16/2013] [Accepted: 12/06/2013] [Indexed: 02/06/2023] Open
Abstract
Long-standing inflammation has emerged as a hallmark of neoplastic transformation of epithelial cells and may be a limiting factor of successful conventional tumor therapies. A complex milieu composed of distinct stromal and immune cells, soluble factors and inflammatory mediators plays a crucial role in supporting and promoting various types of cancers. An augmented inflammatory response can predispose a patient to colorectal cancer (CRC). Common risk factors associated with CRC development include diet and lifestyle, altered intestinal microbiota and commensals, and chronic inflammatory bowel diseases. Cysteinyl leukotrienes are potent inflammatory metabolites synthesized from arachidonic acid and have a broad range of functions involved in the etiology of various pathologies. This review discusses the important role of cysteinyl leukotriene signaling in linking inflammation and CRC.
Collapse
|
10
|
Ting H, Deep G, Agarwal C, Agarwal R. The strategies to control prostate cancer by chemoprevention approaches. Mutat Res 2014; 760:1-15. [PMID: 24389535 DOI: 10.1016/j.mrfmmm.2013.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 11/23/2013] [Accepted: 12/12/2013] [Indexed: 02/07/2023]
Abstract
Prostate cancer (PCA) is the most commonly diagnosed cancer in men in the United States with growing worldwide incidence. Despite intensive investment in improving early detection, PCA often escapes timely detection and mortality remains high; this malignancy being the second highest cancer-associated mortality in American men. Collectively, health care costs of PCA results in an immense financial burden that is only expected to grow. Additionally, even in cases of successful treatment, PCA is associated with long-term and pervasive effects on patients. A proactive alternative to treat PCA is to prevent its occurrence and progression prior to symptomatic malignancy. This may serve to address the issue of burgeoning healthcare costs and increasing number of sufferers. One potential regimen in service of this alternative is PCA chemoprevention. Here, chemical compounds with cancer preventive efficacy are identified on the basis of their potential in a host of categories: their historical medicinal use, correlation with reduced risk in population studies, non-toxicity, their unique chemical properties, or their role in biological systems. PCA chemopreventive agents are drawn from multiple broad classes of chemicals, themselves further subdivided based on source or potential effect, with most derived from natural products. Many such compounds have shown efficacy, varying from inhibiting deregulated PCA cell signaling, proliferation, epithelial to mesenchymal transition (EMT), invasion, metastasis, tumor growth and angiogenesis and inducing apoptosis. Overall, these chemopreventive agents show great promise in PCA pre-clinical models, though additional work remains to be done in effectively translating these findings into clinical use.
Collapse
Affiliation(s)
- Harold Ting
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States
| | - Gagan Deep
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States; University of Colorado Cancer Center, University of Colorado, Aurora, CO, United States
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States; University of Colorado Cancer Center, University of Colorado, Aurora, CO, United States
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States; University of Colorado Cancer Center, University of Colorado, Aurora, CO, United States.
| |
Collapse
|