1
|
Li YL, Zhen L, Lin XM, Qin JC, Li DZ. Prenatal genetic investigation in pregnancies with oligohydramnios: Results from a single referral medical center. Taiwan J Obstet Gynecol 2024; 63:836-840. [PMID: 39481989 DOI: 10.1016/j.tjog.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2024] [Indexed: 11/03/2024] Open
Abstract
OBJECTIVE The aim of this study was to investigate the value of genetic testing using exome sequencing (ES) in oligohydramnios pregnancies with or without other structural abnormalities. MATERIALS AND METHODS A total of 110 singleton pregnancies complicated by oligohydramnios were enrolled, including 52 of isolated oligohydramnios and 58 of non-isolated oligohydramnios. All fetal samples were first tested by quantitative fluorescent polymerase chain reaction (QF-PCR) and followed by chromosomal microarray analysis (CMA). Those with normal CMA were informed of the option of trio ES. RESULTS QF-PCR detected chromosomal abnormality in 4 cases (4/110, 3.6%), including 1 of XXY, 1 of XYY and 2 of triploidy. The remaining 106 cases were tested by CMA, with pathogenic copy number variations (CNVs) detected in 5 cases (5/106, 4.7%), and uniparental disomy (UPD) in 2 cases (2/106, 1.9%). As an option for cases with a normal CMA, ES was accepted by 12 non-isolated cases, and pathogenic or likely pathogenic variants were detected in 5, involving the following genes: PBX1, FREM2, PKHD1 and BBS2, with a 41.7% (5/12) diagnostic rate. CONCLUSION We provided further evidence of using advanced genetic approaches for oligohydramnios pregnancy. Non-isolated oligohydramnios increases the risk of having monogenetic conditions.
Collapse
Affiliation(s)
- Yan-Lin Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Li Zhen
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiao-Mei Lin
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jia-Chun Qin
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Dong-Zhi Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Qin S, Wang X, Wang J, Xi N, Yan M, He Y, Ye M, Zhang Z, Yin Y. Prenatal diagnosis of mosaic chromosomal aneuploidy and uniparental disomy and clinical outcomes evaluation of four fetuses. Mol Cytogenet 2023; 16:35. [PMID: 38057902 DOI: 10.1186/s13039-023-00667-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Few co-occurrence cases of mosaic aneuploidy and uniparental disomy (UPD) chromosomes have been reported in prenatal periods. It is a big challenge for us to predict fetal clinical outcomes with these chromosome abnormalities because of their highly heterogeneous clinical manifestations and limited phenotype attainable by ultrasound. METHODS Amniotic fluid samples were collected from four cases. Karyotype, chromosome microarray analysis, short tandem repeats, and whole exome sequencing were adopted to analyze fetal chromosomal aneuploidy, UPD, and gene variation. Meanwhile, CNVseq analysis proceeded for cultured and uncultured amniocytes in case 2 and case 4 and MS-MLPA for chr11 and chr15 in case 3. RESULTS All four fetuses showed mosaic chromosomal aneuploidy and UPD simultaneously. The results were: Case 1: T2(7%) and UPD(2)mat(12%). Case 2: T15(60%) and UPD(15)mat(40%). Case 3: 45,X(13%) and genome-wide paternal UPD(20%). Case 4: <10% of T20 and > 90% UPD(20)mat in uncultured amniocyte. By analyzing their formation mechanism of mosaic chromosomal aneuploidy and UPD, at least two adverse genetic events happened during their meiosis and mitosis. The fetus of case 1 presented a benign with a normal intrauterine phenotype, consistent with a low proportion of trisomy cells. However, the other three fetuses had adverse pregnancy outcomes, resulting from the UPD chromosomes with imprinted regions involved or a higher level of mosaic aneuploidy. CONCLUSION UPD is often present with mosaic aneuploidy. It is necessary to analyze them simultaneously using a whole battery of analyses for these cases when their chromosomes with imprinted regions are involved or known carriers of a recessive allele. Fetal clinical outcomes were related to the affected chromosomes aneuploidy and UPD, mosaic levels and tissues, methylation status, and homozygous variation of recessive genes on the UPD chromosome. Genetic counseling for pregnant women with such fetuses is crucial to make informed choices.
Collapse
Affiliation(s)
- Shengfang Qin
- Department of Medical Genetics and Prenatal Diagnosis, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, 610045, Sichuan, China.
| | - Xueyan Wang
- Department of Medical Genetics and Prenatal Diagnosis, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, 610045, Sichuan, China
| | - Jin Wang
- Department of Medical Genetics and Prenatal Diagnosis, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, 610045, Sichuan, China
| | - Na Xi
- Department of Medical Genetics and Prenatal Diagnosis, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, 610045, Sichuan, China
| | - Mengjia Yan
- Department of Medical Genetics and Prenatal Diagnosis, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, 610045, Sichuan, China
| | - Yuxia He
- Department of Medical Genetics and Prenatal Diagnosis, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, 610045, Sichuan, China
| | - Mengling Ye
- Department of Medical Genetics and Prenatal Diagnosis, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, 610045, Sichuan, China
| | - Zhuo Zhang
- Department of Medical Genetics and Prenatal Diagnosis, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, 610045, Sichuan, China
| | - Yan Yin
- Department of Medical Genetics and Prenatal Diagnosis, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, 610045, Sichuan, China
| |
Collapse
|
3
|
Hosseini K, Fallahi J, Tabei SMB, Razban V. Gene therapy approaches for GM1 gangliosidosis: Focus on animal and cellular studies. Cell Biochem Funct 2023; 41:1093-1105. [PMID: 38018878 DOI: 10.1002/cbf.3887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/30/2023]
Abstract
One of the most important inherited metabolic disorders is GM1 gangliosidosis, which is a progressive neurological disorder. The main cause of this disease is a genetic defect in the enzyme β-galactosidase due to a mutation in the glb1 gene. Lack of this enzyme in cells (especially neurons) leads to the accumulation of ganglioside substrate in nerve tissues, followed by three clinical forms of GM1 disease (neonatal, juvenile, and adult variants). Genetically, many mutations occur in the exons of the glb1 gene, such as exons 2, 6, 15, and 16, so the most common ones reported in scientific studies include missense/nonsense mutations. Therefore, many studies have examined the genotype-phenotype relationships of this disease and subsequently using gene therapy techniques have been able to reduce the complications of the disease and alleviate the signs and symptoms of the disease. In this regard, the present article reviews the general features of GM1 gangliosidosis and its mutations, as well as gene therapy studies and animal and human models of the disease.
Collapse
Affiliation(s)
- Kamran Hosseini
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jafar Fallahi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed M B Tabei
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
- Comprehensive Medical Genetic Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Razban
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Molloy B, Jones ER, Linhares ND, Buckley PG, Leahy TR, Lynch B, Knerr I, King MD, Gorman KM. Uniparental disomy screen of Irish rare disorder cohort unmasks homozygous variants of clinical significance in the TMCO1 and PRKRA genes. Front Genet 2022; 13:945296. [PMID: 36186440 PMCID: PMC9515794 DOI: 10.3389/fgene.2022.945296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/23/2022] [Indexed: 11/20/2022] Open
Abstract
A uniparental disomy (UPD) screen using whole genome sequencing (WGS) data from 164 trios with rare disorders in the Irish population was performed to identify large runs of homozygosity of uniparental origin that may harbour deleterious recessive variants. Three instances of whole chromosome uniparental isodisomy (UPiD) were identified: one case of maternal isodisomy of chromosome 1 and two cases of paternal isodisomy of chromosome 2. We identified deleterious homozygous variants on isodisomic chromosomes in two probands: a novel p (Glu59ValfsTer20) variant in TMCO1, and a p (Pro222Leu) variant in PRKRA, respectively. The overall prevalence of whole chromosome UPiD in our cohort was 1 in 55 births, compared to 1 in ∼7,500 births in the general population, suggesting a higher frequency of UPiD in rare disease cohorts. As a distinct mechanism underlying homozygosity compared to biallelic inheritance, the identification of UPiD has important implications for family planning and cascade testing. Our study demonstrates that UPD screening may improve diagnostic yields by prioritising UPiD chromosomes during WGS analysis.
Collapse
Affiliation(s)
- B. Molloy
- Genuity Science, Dublin, Ireland
- *Correspondence: B. Molloy,
| | | | | | | | - T. R. Leahy
- Department of Paediatric Immunology, Children’s Health Ireland at Crumlin, Dublin, Ireland
- Department of Paediatrics, Trinity College, University of Dublin, Dublin, Ireland
| | - B. Lynch
- Department of Paediatric Neurology and Clinical Neurophysiology, Children’s Health Ireland at Temple Street, Dublin, Ireland
- School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | - I. Knerr
- School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
- National Centre for Inherited Metabolic Disorders, Children’s Health Ireland at Temple Street, Dublin, Ireland
| | - M. D. King
- Department of Paediatric Neurology and Clinical Neurophysiology, Children’s Health Ireland at Temple Street, Dublin, Ireland
- School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | - K. M. Gorman
- Department of Paediatric Neurology and Clinical Neurophysiology, Children’s Health Ireland at Temple Street, Dublin, Ireland
- School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| |
Collapse
|
5
|
Zhang L, Hu Y, Lu J, Zhao P, Zhang X, Tan L, Li J, Xiao C, Zeng L, He X. Identification of the first congenital ichthyosis case caused by a homozygous deletion in the ALOX12B gene due to chromosome 17 mixed uniparental disomy. Front Genet 2022; 13:931833. [PMID: 36003334 PMCID: PMC9393266 DOI: 10.3389/fgene.2022.931833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/27/2022] [Indexed: 11/18/2022] Open
Abstract
Uniparental disomy (UPD) is a rare genetic event caused by errors during gametogenesis and fertilization leading to two copies of a chromosome or chromosomal region inherited from one parent. MixUPD is one type of UPD that contains isodisomic and heterodisomic parts because of meiotic recombination. Using whole-exome sequencing (WES), we identified the first case of ichthyosis due to a maternal mixUPD on chromosome 17, which results in a homozygous deletion of partial intron 8 to exon 10 in ALOX12B, being predicted to lead to an internal protein deletion of 97 amino acids. We also performed a retrospective analysis of 198 patients with ALOX12B mutations. The results suggested that the exon 9 and 10 are located in the mutational hotspots of ALOX12B. In addition, our patient has microtia and congenital stenosis of the external auditory canals, which is very rare in patients with ALOX12B mutations. Our study reports the first case of autosomal recessive congenital ichthyosis (ARCI) due to a mixUPD of chromosome 17 and expands the spectrum of clinical manifestations of ARCI caused by mutations in the ALOX12B gene.
Collapse
Affiliation(s)
- Lei Zhang
- Precision Medical Center, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yanqiu Hu
- Precision Medical Center, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Jingjing Lu
- Dermatology Department, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Peiwei Zhao
- Precision Medical Center, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Xiankai Zhang
- Precision Medical Center, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Li Tan
- Precision Medical Center, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Jun Li
- Otolaryngology Department, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Cuiping Xiao
- Precision Medical Center, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- *Correspondence: Xuelian He, ; Cuiping Xiao, ; Linkong Zeng,
| | - Linkong Zeng
- Neonatology Department, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- *Correspondence: Xuelian He, ; Cuiping Xiao, ; Linkong Zeng,
| | - Xuelian He
- Precision Medical Center, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- *Correspondence: Xuelian He, ; Cuiping Xiao, ; Linkong Zeng,
| |
Collapse
|
6
|
Wallerstein V, Grant L, Wallerstein R. Complete uniparental disomy of chromosome 1 in a child with isolated developmental delay. Clin Case Rep 2022; 10:e5956. [PMID: 35898748 PMCID: PMC9307878 DOI: 10.1002/ccr3.5956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/15/2022] [Accepted: 03/07/2022] [Indexed: 11/10/2022] Open
Abstract
Complete uniparental disomy of chromosome 1 (UPD1) is an uncommon genetic finding about which a specific phenotype has not yet been established. We present a boy who has complete paternal UPD1 and isolated developmental delay and suggest that there is no clear phenotype of UPD1.
Collapse
Affiliation(s)
| | - Leon Grant
- Pediatric Neurology, Sutter Medical CenterSacramentoCaliforniaUSA
| | | |
Collapse
|
7
|
Bu X, Li X, Zhou S, Shi L, Jiang X, Peng C, Li H, He J. Prenatal diagnosis of complete paternal uniparental isodisomy for chromosome 3: a case report. Mol Cytogenet 2021; 14:50. [PMID: 34742342 PMCID: PMC8572431 DOI: 10.1186/s13039-021-00569-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/09/2021] [Indexed: 11/17/2022] Open
Abstract
Background Uniparental disomy (UPD) is defined as an inheritance of two chromosomes from only one of the parents with no representative copy from the other. Paternal-origin UPD of chromosome 3 is a very rare condition, with only five cases of paternal UPD(3) reported. Case presentation Here, we report a prenatal case that is only the second confirmed paternal UPD(3) reported with no apparent disease phenotype. The fetus had a normal karyotype and normal ultrasound features throughout gestation. Copy neutral regions of homozygosity on chromosome 3 were identified by single nucleotide polymorphism (SNP) array. Subsequent SNP array data of parent–child trios showed that the fetus carried complete paternal uniparental isodisomy (isoUPD) of chromosome 3. The parents decided to continue with the pregnancy after genetic counseling, and the neonate had normal physical findings at birth and showed normal development after 1.5 years. Conclusions These findings provided further evidence to confirm that there were no important imprinted genes on paternal chromosome 3 that caused serious diseases and a reference for the prenatal diagnosis and genetic counseling of UPD(3) in the future.
Collapse
Affiliation(s)
- Xiufen Bu
- Department of Genetics and Eugenics, Changsha Hospital for Maternal and Child Health Care, Changsha, 410007, Hunan, China
| | - Xu Li
- Department of Basic Medicine, Yiyang Medical College, Yiyang, 413000, Hunan, China
| | - Shihao Zhou
- Department of Genetics and Eugenics, Changsha Hospital for Maternal and Child Health Care, Changsha, 410007, Hunan, China
| | - Liangcheng Shi
- Department of Genetics and Eugenics, Changsha Hospital for Maternal and Child Health Care, Changsha, 410007, Hunan, China
| | - Xuanyu Jiang
- Department of Genetics and Eugenics, Changsha Hospital for Maternal and Child Health Care, Changsha, 410007, Hunan, China
| | - Can Peng
- Department of Genetics and Eugenics, Changsha Hospital for Maternal and Child Health Care, Changsha, 410007, Hunan, China
| | - Hongyu Li
- Department of Genetics and Eugenics, Changsha Hospital for Maternal and Child Health Care, Changsha, 410007, Hunan, China
| | - Jun He
- Department of Genetics and Eugenics, Changsha Hospital for Maternal and Child Health Care, Changsha, 410007, Hunan, China.
| |
Collapse
|
8
|
Horga A, Manole A, Mitchell AL, Bugiardini E, Hargreaves IP, Mowafi W, Bettencourt C, Blakely EL, He L, Polke JM, Woodward CE, Dalla Rosa I, Shah S, Pittman AM, Quinlivan R, Reilly MM, Taylor RW, Holt IJ, Hanna MG, Pitceathly RDS, Spinazzola A, Houlden H. Uniparental isodisomy of chromosome 2 causing MRPL44-related multisystem mitochondrial disease. Mol Biol Rep 2021; 48:2093-2104. [PMID: 33742325 DOI: 10.1007/s11033-021-06188-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/28/2021] [Indexed: 12/15/2022]
Abstract
Mutations in nuclear-encoded protein subunits of the mitochondrial ribosome are an increasingly recognised cause of oxidative phosphorylation system (OXPHOS) disorders. Among them, mutations in the MRPL44 gene, encoding a structural protein of the large subunit of the mitochondrial ribosome, have been identified in four patients with OXPHOS defects and early-onset hypertrophic cardiomyopathy with or without additional clinical features. A 23-year-old individual with cardiac and skeletal myopathy, neurological involvement, and combined deficiency of OXPHOS complexes in skeletal muscle was clinically and genetically investigated. Analysis of whole-exome sequencing data revealed a homozygous mutation in MRPL44 (c.467 T > G), which was not present in the biological father, and a region of homozygosity involving most of chromosome 2, raising the possibility of uniparental disomy. Short-tandem repeat and genome-wide SNP microarray analyses of the family trio confirmed complete maternal uniparental isodisomy of chromosome 2. Mitochondrial ribosome assembly and mitochondrial translation were assessed in patient derived-fibroblasts. These studies confirmed that c.467 T > G affects the stability or assembly of the large subunit of the mitochondrial ribosome, leading to impaired mitochondrial protein synthesis and decreased levels of multiple OXPHOS components. This study provides evidence of complete maternal uniparental isodisomy of chromosome 2 in a patient with MRPL44-related disease, and confirms that MRLP44 mutations cause a mitochondrial translation defect that may present as a multisystem disorder with neurological involvement.
Collapse
Affiliation(s)
- Alejandro Horga
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK.
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK.
- Neuromuscular Diseases Unit, Department of Neurology, Hospital Clínico San Carlos and Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040, Madrid, Spain.
| | - Andreea Manole
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
- Department of Molecular Neuroscience, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Alice L Mitchell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London, NW3 2PF, UK
| | - Enrico Bugiardini
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Iain P Hargreaves
- Neurometabolic Unit, the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Walied Mowafi
- Neurosciences Department, Calderdale Royal Hospital, Halifax, HX3 0PW, UK
| | - Conceição Bettencourt
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 1PJ, UK
| | - Emma L Blakely
- Institute of Neuroscience, Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Langping He
- Institute of Neuroscience, Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - James M Polke
- Neurogenetic Unit, the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Catherine E Woodward
- Neurogenetic Unit, the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Ilaria Dalla Rosa
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London, NW3 2PF, UK
| | - Sachit Shah
- Lysholm Department of Neuroradiology, the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Alan M Pittman
- Department of Molecular Neuroscience, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Ros Quinlivan
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Mary M Reilly
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Robert W Taylor
- Institute of Neuroscience, Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Ian J Holt
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London, NW3 2PF, UK
- Biodonostia Health Research Institute, 20014, San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
| | - Michael G Hanna
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Robert D S Pitceathly
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Antonella Spinazzola
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London, NW3 2PF, UK
| | - Henry Houlden
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK.
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK.
- Department of Molecular Neuroscience, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|
9
|
Chen CP, Ko TM, Chen CY, Chern SR, Wu PS, Chen SW, Wu FT, Pan CW, Wang W. Prenatal diagnosis and molecular cytogenetic characterization of mosaicism for a small supernumerary marker chromosome derived from chromosome 3. Taiwan J Obstet Gynecol 2020; 58:864-868. [PMID: 31759544 DOI: 10.1016/j.tjog.2019.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2019] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE We present prenatal diagnosis and molecular cytogenetic characterization of a small supernumerary marker chromosome (sSMC) derived from chromosome 3. CASE REPORT A 36-year-old woman underwent amniocentesis at 19 weeks of gestation because of advanced maternal age. Amniocentesis revealed a karyotype of 47,XX,+mar[6]/46,XX[18]. The mother's karyotype was 47,XX,+mar[4]/46,XX[46]. The father's karyotype was 46.XY. Array comparative genomic hybridization (aCGH) analysis of uncultured amniocytes revealed a result of arr 3q11.1q12.1 (93,575,285-98,956,687) × 2-3 [GRCh37 (hg19)]. Prenatal ultrasound findings were unremarkable. The parents elected to continue the pregnancy, and a 2470-g female baby was delivered at 37 weeks of gestation without phenotypic abnormalities. The cord blood had a karyotype of 47,XX,+mar[8]/46,XX[32]. aCGH analysis of cord blood revealed a result of arr 3q11.1q11.2 (93,649,973-97,137,764) × 2.4 [GRCh37 (hg19)] with a log2 ratio of 0.25 and a 30-40% mosaicism for 3.488-Mb dosage increase in 3q11.1-q11.2 encompassing four [Online Mendelian Inheritance in Man (OMIM)] genes of PROS1, ARL13B, NSUN3 and EPHA6. Metaphase fluorescence in situ hybridization (FISH) analysis confirmed 30% (6/20 cells) mosaicism for the sSMC(3) in the blood lymphocytes. CONCLUSION aCGH and FISH analyses are useful for perinatal investigation of a prenatally detected sSMC.
Collapse
Affiliation(s)
- Chih-Ping Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan; School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Institute of Clinical and Community Health Nursing, National Yang-Ming University, Taipei, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| | - Tsang-Ming Ko
- Genephile Bioscience Laboratory, Ko's Obstetrics and Gynecology, Taipei, Taiwan
| | - Chen-Yu Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Schu-Rern Chern
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | | | - Shin-Wen Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Fang-Tzu Wu
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chen-Wen Pan
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wayseen Wang
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; Department of Bioengineering, Tatung University, Taipei, Taiwan
| |
Collapse
|
10
|
Phillips J, Courel S, Rebelo AP, Bis-Brewer DM, Bardakjian T, Dankwa L, Hamedani AG, Züchner S, Scherer SS. POLG mutations presenting as Charcot-Marie-Tooth disease. J Peripher Nerv Syst 2019; 24:213-218. [PMID: 30843307 DOI: 10.1111/jns.12313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 02/27/2019] [Accepted: 03/02/2019] [Indexed: 12/15/2022]
Abstract
We report on two patients, with different POLG mutations, in whom axonal neuropathy dominated the clinical picture. One patient presented with late onset sensory axonal neuropathy caused by a homozygous c.2243G>C (p.Trp748Ser) mutation that resulted from uniparental disomy of the long arm of chromosome 15. The other patient had a complex phenotype that included early onset axonal Charcot-Marie-Tooth disease (CMT) caused by compound heterozygous c.926G>A (p.Arg309His) and c.2209G>C (p.Gly737Arg) mutations.
Collapse
Affiliation(s)
- Jade Phillips
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Steve Courel
- Department of Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, Florida
| | - Adriana P Rebelo
- Department of Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, Florida
| | - Dana M Bis-Brewer
- Department of Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, Florida
| | - Tanya Bardakjian
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lois Dankwa
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ali G Hamedani
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephan Züchner
- Department of Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, Florida
| | - Steven S Scherer
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
11
|
Myers KA, Bennett MF, Chow CW, Carden SM, Mandelstam SA, Bahlo M, Scheffer IE. Mosaic uniparental disomy results in GM1 gangliosidosis with normal enzyme assay. Am J Med Genet A 2017; 176:230-234. [DOI: 10.1002/ajmg.a.38549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/31/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Kenneth A. Myers
- Department of Medicine; Epilepsy Research Centre; The University of Melbourne, Austin Health; Heidelberg Victoria Australia
| | - Mark F. Bennett
- Department of Medicine; Epilepsy Research Centre; The University of Melbourne, Austin Health; Heidelberg Victoria Australia
- The Walter and Eliza Hall Institute of Medical Research; Parkville Victoria Australia
- Department of Medical Biology; The University of Melbourne; Parkville Victoria Australia
| | - Chung W. Chow
- Department of Anatomical Pathology; Royal Children's Hospital; Parkville Victoria Australia
- Department of Paediatrics; The University of Melbourne; Royal Children's Hospital; Parkville Victoria Australia
| | - Susan M. Carden
- Department of Paediatrics; The University of Melbourne; Royal Children's Hospital; Parkville Victoria Australia
- The Royal Victorian Eye and Ear Hospital; East Melbourne Victoria Australia
| | - Simone A. Mandelstam
- Department of Paediatrics; The University of Melbourne; Royal Children's Hospital; Parkville Victoria Australia
- Department of Radiology; The University of Melbourne; Parkville Victoria Australia
- The Florey Institute of Neuroscience and Mental Health; Heidelberg Victoria Australia
| | - Melanie Bahlo
- The Walter and Eliza Hall Institute of Medical Research; Parkville Victoria Australia
- Department of Medical Biology; The University of Melbourne; Parkville Victoria Australia
- Department of Mathematics and Statistics; The University of Melbourne; Parkville Victoria Australia
| | - Ingrid E. Scheffer
- Department of Medicine; Epilepsy Research Centre; The University of Melbourne, Austin Health; Heidelberg Victoria Australia
- Department of Paediatrics; The University of Melbourne; Royal Children's Hospital; Parkville Victoria Australia
- The Florey Institute of Neuroscience and Mental Health; Heidelberg Victoria Australia
| |
Collapse
|
12
|
Karger L, Khan WA, Calabio R, Singh R, Xiang B, Babu A, Cohen N, Yang AC, Scott SA. Maternal uniparental disomy of chromosome 15 and concomitant STRC and CATSPER2 deletion-mediated deafness-infertility syndrome. Am J Med Genet A 2017; 173:1436-1439. [PMID: 28317263 DOI: 10.1002/ajmg.a.38154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/03/2017] [Accepted: 01/06/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Lisa Karger
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Wahab A Khan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rafaela Calabio
- Division of Neonatology, Mount Sinai West, New York, New York
| | - Ram Singh
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Bixia Xiang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Arvind Babu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ninette Cohen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Amy C Yang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Stuart A Scott
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
13
|
Eggermann T, Soellner L, Buiting K, Kotzot D. Mosaicism and uniparental disomy in prenatal diagnosis. Trends Mol Med 2015; 21:77-87. [DOI: 10.1016/j.molmed.2014.11.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/18/2014] [Accepted: 11/26/2014] [Indexed: 01/21/2023]
|