1
|
Sharma R, Malviya R, Singh S, Prajapati B. A Critical Review on Classified Excipient Sodium-Alginate-Based Hydrogels: Modification, Characterization, and Application in Soft Tissue Engineering. Gels 2023; 9:gels9050430. [PMID: 37233021 DOI: 10.3390/gels9050430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Alginates are polysaccharides that are produced naturally and can be isolated from brown sea algae and bacteria. Sodium alginate (SA) is utilized extensively in the field of biological soft tissue repair and regeneration owing to its low cost, high biological compatibility, and quick and moderate crosslinking. In addition to their high printability, SA hydrogels have found growing popularity in tissue engineering, particularly due to the advent of 3D bioprinting. There is a developing curiosity in tissue engineering with SA-based composite hydrogels and their potential for further improvement in terms of material modification, the molding process, and their application. This has resulted in numerous productive outcomes. The use of 3D scaffolds for growing cells and tissues in tissue engineering and 3D cell culture is an innovative technique for developing in vitro culture models that mimic the in vivo environment. Especially compared to in vivo models, in vitro models were more ethical and cost-effective, and they stimulate tissue growth. This article discusses the use of sodium alginate (SA) in tissue engineering, focusing on SA modification techniques and providing a comparative examination of the properties of several SA-based hydrogels. This review also covers hydrogel preparation techniques, and a catalogue of patents covering different hydrogel formulations is also discussed. Finally, SA-based hydrogel applications and future research areas concerning SA-based hydrogels in tissue engineering were examined.
Collapse
Affiliation(s)
- Rishav Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Bhupendra Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva 384012, India
| |
Collapse
|
2
|
Rahmanifar E, Shiri F, Shahraki S, Karimi P. Experimental design for removal of lead ions from water samples using an engineered novel chitosan functionalized Schiff-base adsorbent. CHEM ENG COMMUN 2023. [DOI: 10.1080/00986445.2023.2174862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
| | | | | | - Pouya Karimi
- Department of Chemistry, University of Zabol, Zabol, Iran
| |
Collapse
|
3
|
Solid State NMR a Powerful Technique for Investigating Sustainable/Renewable Cellulose-Based Materials. Polymers (Basel) 2022; 14:polym14051049. [PMID: 35267872 PMCID: PMC8914817 DOI: 10.3390/polym14051049] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 01/27/2023] Open
Abstract
Solid state nuclear magnetic resonance (ssNMR) is a powerful and attractive characterization method for obtaining insights into the chemical structure and dynamics of a wide range of materials. Current interest in cellulose-based materials, as sustainable and renewable natural polymer products, requires deep investigation and analysis of the chemical structure, molecular packing, end chain motion, functional modification, and solvent–matrix interactions, which strongly dictate the final product properties and tailor their end applications. In comparison to other spectroscopic techniques, on an atomic level, ssNMR is considered more advanced, especially in the structural analysis of cellulose-based materials; however, due to a dearth in the availability of a broad range of pulse sequences, and time consuming experiments, its capabilities are underestimated. This critical review article presents the comprehensive and up-to-date work done using ssNMR, including the most advanced NMR strategies used to overcome and resolve the structural difficulties present in different types of cellulose-based materials.
Collapse
|
4
|
El Hariri El Nokab M, Sebakhy KO. Solid State NMR Spectroscopy a Valuable Technique for Structural Insights of Advanced Thin Film Materials: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1494. [PMID: 34200088 PMCID: PMC8228666 DOI: 10.3390/nano11061494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 01/05/2023]
Abstract
Solid-state NMR has proven to be a versatile technique for studying the chemical structure, 3D structure and dynamics of all sorts of chemical compounds. In nanotechnology and particularly in thin films, the study of chemical modification, molecular packing, end chain motion, distance determination and solvent-matrix interactions is essential for controlling the final product properties and applications. Despite its atomic-level research capabilities and recent technical advancements, solid-state NMR is still lacking behind other spectroscopic techniques in the field of thin films due to the underestimation of NMR capabilities, availability, great variety of nuclei and pulse sequences, lack of sensitivity for quadrupole nuclei and time-consuming experiments. This article will comprehensively and critically review the work done by solid-state NMR on different types of thin films and the most advanced NMR strategies, which are beyond conventional, and the hardware design used to overcome the technical issues in thin-film research.
Collapse
Affiliation(s)
- Mustapha El Hariri El Nokab
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands;
| | - Khaled O. Sebakhy
- Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
5
|
A brief introduction to the basics of NMR spectroscopy and selected examples of its applications to materials characterization. PHYSICAL SCIENCES REVIEWS 2020. [DOI: 10.1515/psr-2019-0086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AbstractNuclear magnetic resonance (NMR) spectroscopy is an analytical technique that gives information on the local magnetic field around atomic nuclei. Since the local magnetic field of the nucleus is directly influenced by such features of the molecular structure as constitution, configuration, conformation, intermolecular interactions, etc., NMR can provide exhaustive information on the chemical structure, which is unrivaled by any other analytical method. Starting from the 1950s, NMR spectroscopy first revolutionized organic chemistry and became an indispensable tool for the structure elucidation of small, soluble molecules. As the technique evolved, NMR rapidly conquered other disciplines of chemical sciences. When the analysis of macromolecules and solids also became feasible, the technique turned into a staple in materials characterization, too. All aspects of NMR spectroscopy, including technical and technological development, as well as its applications in natural sciences, have been growing exponentially since its birth. Hence, it would be impossible to cover, or even touch on, all topics of importance related to this versatile analytical tool. In this tutorial, we aim to introduce the reader to the basic principles of NMR spectroscopy, instrumentation, historical development and currently available brands, practical cost aspects, sample preparation, and spectrum interpretation. We show a number of advanced techniques relevant to materials characterization. Through a limited number of examples from different fields of materials science, we illustrate the immense scope of the technique in the analysis of materials. Beyond our inherently limited introduction, an ample list of references should help the reader to navigate further in the field of NMR spectroscopy.
Collapse
|
6
|
Taylor AJ, Rendina E, Smith BJ, Zhou DH. Analyses of mineral specific surface area and hydroxyl substitution for intact bone. Chem Phys Lett 2013; 588. [PMID: 24347673 DOI: 10.1016/j.cplett.2013.09.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Bone minerals possess two primary hydrogen sources: hydroxide ions in the nanocrystalline core and structural water in the amorphous surface layer. In order to accurately measure their concentrations using hydrogen to phosphorus cross polarization NMR spectroscopy, it is necessary to analyze the dependence of signal intensities on serial contact times, namely, cross polarization kinetics. A reliable protocol is developed to iteratively decompose the severely overlapped spectra and to analyze the cross-polarization kinetics, leading to measurement of hydroxyl and structural water concentrations. Structural water concentration is used to estimate mineral specific surface area and nanocrystal thickness for intact bone.
Collapse
Affiliation(s)
- Amanda J Taylor
- Department of Physics, Oklahoma State University, Stillwater, OK, USA 74078
| | - Elizabeth Rendina
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA 74078
| | - Brenda J Smith
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA 74078
| | - Donghua H Zhou
- Department of Physics, Oklahoma State University, Stillwater, OK, USA 74078
| |
Collapse
|
7
|
Srebro M, Autschbach J. Computational Analysis of47/49Ti NMR Shifts and Electric Field Gradient Tensors of Half-Titanocene Complexes: Structure-Bonding-Property Relationships. Chemistry 2013; 19:12018-33. [DOI: 10.1002/chem.201301301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Indexed: 11/08/2022]
|
8
|
Karoyo AH, Sidhu P, Wilson LD, Hazendonk P. Characterization and dynamic properties for the solid inclusion complexes of β-cyclodextrin and perfluorooctanoic acid. J Phys Chem B 2013; 117:8269-82. [PMID: 23713518 DOI: 10.1021/jp402559n] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The structural characterization and dynamic properties of solid-state inclusion complexes (ICs) formed between β-cyclodextrin (β-CD; host) and perfluorooctanoic acid (PFOA; guest) were investigated using (13)C NMR spectroscopy. The 1:1 and 2:1 host/guest solid-state complexes were prepared using a modified dissolution method to obtain complexes with high phase purity. These complexes were further characterized using differential scanning calorimetry (DSC), FT-IR spectroscopy, powder X-ray diffraction (PXRD), (19)F directpolarization (DP), and (13)C cross-polarization (CP) with magic-angle spinning (MAS) NMR spectroscopy. The (19)F → (13)C CP results provided unequivocal support for the formation of well-defined inclusion compounds. The phase purity of the complexes formed between β-CD and PFOA were assessed using the (19)F DP NMR technique at variable temperature (VT) and MAS at 20 kHz. The complexes were found to be of high phase purity when prepared in accordance with the modified dissolution method. The motional dynamics of the guest in the solid complexes were assessed using T1/T2/T1ρ relaxation NMR methods at ambient and VT conditions. The relaxation data revealed reliable and variable guest dynamics for the 1:1 versus 2:1 complexes at the VTs investigated. The motional dynamics of the guest molecules involve an ensemble of axial motions of the whole chain and 120° rotational jumps of the methyl (CF3) group at the termini of the perfluorocarbon chain. The axial and rotational dynamics of the guest in the 1:1 and 2:1 complexes differ in distribution and magnitude in accordance with the binding geometry of the guest within the host.
Collapse
Affiliation(s)
- Abdalla H Karoyo
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada
| | | | | | | |
Collapse
|
9
|
Avolio R, Gentile G, Avella M, Carfagna C, Errico ME. Polymer–filler interactions in PET/CaCO3 nanocomposites: Chain ordering at the interface and physical properties. Eur Polym J 2013. [DOI: 10.1016/j.eurpolymj.2012.10.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Vanderveen JR, Blackburn MA, Ooms KJ. 2H double- and zero-quantum filtered NMR spectroscopy for probing the environments of water in Nafion. CAN J CHEM 2011. [DOI: 10.1139/v11-045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Multiple quantum 2H NMR spectroscopy is used to study the structure and dynamics of D2O in Nafion membranes as a function of membrane hydration. By employing both double- and zero-quantum filtered experiments, residual quadrupolar coupling constants and T2 relaxation values are obtained. The residual couplings vary from 240 to 20 Hz and the T2 values range from 20 to 180 ms, with the high hydration values having smaller couplings and longer T2 values. Analysis of the data using a water-exchange model suggests that the changes in parameters arise from a change in the fraction of time water spends in the anisotropic environments and not from changes in the order parameters that characterize the anisotropic sites. It has been found that a two-site model is needed to accurately fit the spectra above a hydration level of 10 D2O per sulfonate, with the second site having a negligible residual quadrupolar coupling. The data supports a model with two different hydration layers at high hydration and can be understood in terms of the recently proposed parallel-channel model for Nafion hydration.
Collapse
Affiliation(s)
- Jesse R. Vanderveen
- Department of Chemistry, The King’s University College, 9125-50St. Edmonton, AB T6B 2H3, Canada
| | - Mark A. Blackburn
- Department of Chemistry, The King’s University College, 9125-50St. Edmonton, AB T6B 2H3, Canada
| | - Kristopher J. Ooms
- Department of Chemistry, The King’s University College, 9125-50St. Edmonton, AB T6B 2H3, Canada
| |
Collapse
|
11
|
Carignani E, Borsacchi S, Geppi M. Dynamics by solid-state NMR: detailed study of ibuprofen Na salt and comparison with ibuprofen. J Phys Chem A 2011; 115:8783-90. [PMID: 21744822 DOI: 10.1021/jp202650n] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The various internal rotations and interconformational jumps of the Na-salt form of ibuprofen in the solid state were characterized in detail by means of the simultaneous analysis of a variety of low- and high-resolution NMR experiments aimed at measuring several (13)C and (1)H spectral and relaxation properties at different temperatures and frequencies. The results were first qualitatively analyzed to identify the motions of the different molecular fragments and to assign them to specific frequency regimes (slow, <10(3) Hz; intermediate, 10(3)-10(6) Hz; and fast, >10(6) Hz). Subsequently, a simultaneous fit of the experimental data sets most sensitive to each frequency range was performed by using suitable motional models, thus obtaining, for each motion, correlation times and activation energies. The motions so characterized were: the rotations of the three methyl groups and of the isobutyl group, occurring in the fast regime, and the π-flip of the phenyl ring, belonging to the intermediate motional regime. The results obtained for the Na-salt form were compared with those of the acidic form of ibuprofen, previously obtained from a similar solid-state NMR approach: despite the very similar chemical structure of the two compounds, their dynamic properties in the solid state are noticeably different.
Collapse
Affiliation(s)
- Elisa Carignani
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, v. Risorgimento 35, 56126 Pisa, Italy
| | | | | |
Collapse
|
12
|
Karoyo AH, Borisov AS, Wilson LD, Hazendonk P. Formation of Host-Guest Complexes of β-Cyclodextrin and Perfluorooctanoic Acid. J Phys Chem B 2011; 115:9511-27. [DOI: 10.1021/jp110806k] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Abdalla H. Karoyo
- University of Saskatchewan, Department of Chemistry, Saskatoon, SK, S7N 5C9, Canada
| | - Alex S. Borisov
- University of Lethbridge, Department of Chemistry and Biochemistry, Lethbridge, AB, Canada
| | - Lee D. Wilson
- University of Saskatchewan, Department of Chemistry, Saskatoon, SK, S7N 5C9, Canada
| | - Paul Hazendonk
- University of Lethbridge, Department of Chemistry and Biochemistry, Lethbridge, AB, Canada
| |
Collapse
|
13
|
Carignani E, Borsacchi S, Geppi M. Detailed characterization of the dynamics of ibuprofen in the solid state by a multi-technique NMR approach. Chemphyschem 2011; 12:974-81. [PMID: 21381176 DOI: 10.1002/cphc.201000946] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Indexed: 02/05/2023]
Abstract
The internal rotations and interconformational jumps of ibuprofen in the solid state are fully characterized by the simultaneous analysis of a variety of low- and high-resolution NMR experiments for the measurement of several (13)C and (1)H spectral and relaxation properties, performed at different temperatures and, in some cases, frequencies. The results are first qualitatively analyzed to identify the motions of the different molecular fragments and to assign them to specific frequency ranges (slow, <10(3) Hz; intermediate, 10(3)-10(6) Hz; and fast, >10(6) Hz). In a second step, a simultaneous fit of the experimental data sets most sensitive to each frequency range is performed by means of suitable motional models to obtain, for each motion, values of correlation times and activation energies. The rotations of the three methyl groups around their ternary symmetry axes, which occur in the fast regime, are characterized by slightly different activation energies. Thanks to the simultaneous analysis of (1)H and (13)C data, the π-flip of the dimeric structure made by the acidic groups is also identified and seen to occur in the fast regime. On the contrary, the π-flip of the phenyl ring is found to occur in the slow motional regime, while the rotations of the isobutyl and propionic groups are frozen. The approach used appears to be of general applicability for studying the dynamics of small organic molecules.
Collapse
Affiliation(s)
- Elisa Carignani
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Risorgimento 35, 56126 Pisa, Italy
| | | | | |
Collapse
|