1
|
Baloch M, Labidi J. Lignin biopolymer: the material of choice for advanced lithium-based batteries. RSC Adv 2021; 11:23644-23653. [PMID: 35479805 PMCID: PMC9036608 DOI: 10.1039/d1ra02611a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/18/2021] [Indexed: 11/21/2022] Open
Abstract
Lignin, an aromatic polymer, offers interesting electroactive redox properties and abundant active functional groups. Due to its quinone functionality, it fulfils the requirement of erratic electrical energy storage by only providing adequate charge density. Research on the use of lignin as a renewable material in energy storage applications has been published in the form of reviews and scientific articles. Lignin has been used as a binder, polymer electrolyte and an electrode material, i.e. organic composite electrodes/hybrid lignin-polymer combination in different battery systems depending on the principal charge of quinone and hydroquinone. Furthermore, lignin-derived carbons have gained much popularity. The aim of this review is to depict the meticulous follow-ups of the vital challenges and progress linked to lignin usage in different lithium-based conventional and next-generation batteries as a valuable, ecological and low-cost material. The key factor of this new finding is to open a new path towards sustainable and renewable future lithium-based batteries for practical/industrial applications.
Collapse
Affiliation(s)
- Marya Baloch
- Department of Chemical and Environmental Engineering, School of Engineering Donostia-San Sebastian Gipuzkoa Spain
| | - Jalel Labidi
- Department of Chemical and Environmental Engineering, School of Engineering Donostia-San Sebastian Gipuzkoa Spain
| |
Collapse
|
2
|
Fang Z, Hu X, Yu D. Integrated Photo-Responsive Batteries for Solar Energy Harnessing: Recent Advances, Challenges, and Opportunities. Chempluschem 2020; 85:600-612. [PMID: 31945278 DOI: 10.1002/cplu.201900608] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/18/2019] [Indexed: 12/21/2022]
Abstract
Photo-responsive batteries that enable the effective combination of solar harvesting and energy conversion/storage functionalities render a potential solution to achieve the large-scale utilization of unlimited and cost-effective solar energy and alleviate the limits of conventional energy storage devices. The internal integration of photo-responsive electrodes into rechargeable batteries with the simplest two-electrode configuration is regarded as a reliable and appealing strategy for highly-efficient and low-cost utilization of solar energy by simplifying the device architecture and improving the energy efficiency. This progress report provides a brief review on photo-responsive batteries with integrated two-electrode configuration that can achieve solar energy conversion/storage in one single device. The basic device architecture, operating principles and practical performance of various photo-responsive systems based on solar energy harvesting in various batteries including Li ion batteries, Li-S batteries, Li-I batteries, dual-liquid redox batteries, Li-O2 batteries, non-Li anode-O2 /air batteries are summarized and discussed. Finally, the future opportunities and challenges regarding the two-electrode photo-responsive batteries are proposed.
Collapse
Affiliation(s)
- Zhengsong Fang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Xuanhe Hu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Dingshan Yu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
3
|
Oyama Y, Kawano R, Tanaka Y, Akita M. Dinuclear ruthenium acetylide complexes with diethynylated anthrahydroquinone and anthraquinone frameworks: a multi-stimuli-responsive organometallic switch. Dalton Trans 2019; 48:7432-7441. [PMID: 31066424 DOI: 10.1039/c9dt01255a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The anthrahydroquinone (AHQ)/anthraquinone (AQ) system is of particular interest as a molecular switching system for molecule-based devices because AHQ and AQ can be interconverted by redox stimuli and their π-conjugated systems are distinct from each other. To date, however, a way to modify and/or functionalize the switching behavior based on the AHQ/AQ system is still limited. In the present contribution, the synthesis and properties of multi-responsive dinuclear molecular switches having Ru(dppe)2 fragments bridged by the diethynylated diacetoxyanthracene (AcAHQ) and AQ units (μ-AcAHQ/AQ){C[triple bond, length as m-dash]C-Ru(R)(dppe)2}2 (R = Cl, C4TMS) are presented. The terminal Ru(dppe)2 fragments are redox-active and, therefore, the intermetallic interaction can be estimated by electrochemical as well as IVCT band analysis. As a result, the organometallic AcAHQ/AQ-Ru system turns out to be an effective bimodal molecular switch, which is triggered not only by redox stimuli but also by pH stimuli.
Collapse
Affiliation(s)
- Yousuke Oyama
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan.
| | - Reo Kawano
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan.
| | - Yuya Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan.
| | - Munetaka Akita
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan.
| |
Collapse
|
4
|
Mauger A, Julien C, Paolella A, Armand M, Zaghib K. Recent Progress on Organic Electrodes Materials for Rechargeable Batteries and Supercapacitors. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1770. [PMID: 31159168 PMCID: PMC6600696 DOI: 10.3390/ma12111770] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 05/21/2019] [Accepted: 05/27/2019] [Indexed: 12/31/2022]
Abstract
Rechargeable batteries are essential elements for many applications, ranging from portable use up to electric vehicles. Among them, lithium-ion batteries have taken an increasing importance in the day life. However, they suffer of several limitations: safety concerns and risks of thermal runaway, cost, and high carbon footprint, starting with the extraction of the transition metals in ores with low metal content. These limitations were the motivation for an intensive research to replace the inorganic electrodes by organic electrodes. Subsequently, the disadvantages that are mentioned above are overcome, but are replaced by new ones, including the solubility of the organic molecules in the electrolytes and lower operational voltage. However, recent progress has been made. The lower voltage, even though it is partly compensated by a larger capacity density, may preclude the use of organic electrodes for electric vehicles, but the very long cycling lives and the fast kinetics reached recently suggest their use in grid storage and regulation, and possibly in hybrid electric vehicles (HEVs). The purpose of this work is to review the different results and strategies that are currently being used to obtain organic electrodes that make them competitive with lithium-ion batteries for such applications.
Collapse
Affiliation(s)
- Alain Mauger
- Sorbonne Université, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), UMR-CNRS 7590, 4 place Jussieu, 75005 Paris, France.
| | - Christian Julien
- Sorbonne Université, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), UMR-CNRS 7590, 4 place Jussieu, 75005 Paris, France.
| | - Andrea Paolella
- Centre of Excellence in Transportation Electrification and Energy Storage (CETEES), Hydro-Québec, 1806, Lionel-Boulet blvd., Varennes, QC J3X 1S1, Canada.
| | - Michel Armand
- CIC Energigune, Parque Tecnol Alava, 01510 Minano, Spain.
| | - Karim Zaghib
- Centre of Excellence in Transportation Electrification and Energy Storage (CETEES), Hydro-Québec, 1806, Lionel-Boulet blvd., Varennes, QC J3X 1S1, Canada.
| |
Collapse
|
5
|
Kato R, Yoshimasa K, Egashira T, Oya T, Oyaizu K, Nishide H. A ketone/alcohol polymer for cycle of electrolytic hydrogen-fixing with water and releasing under mild conditions. Nat Commun 2016; 7:13032. [PMID: 27687772 PMCID: PMC5427515 DOI: 10.1038/ncomms13032] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/26/2016] [Indexed: 11/23/2022] Open
Abstract
Finding a safe and efficient carrier of hydrogen is a major challenge. Recently, hydrogenated organic compounds have been studied as hydrogen storage materials because of their ability to stably and reversibly store hydrogen by forming chemical bonds; however, these compounds often suffer from safety issues and are usually hydrogenated with hydrogen at high pressure and/or temperature. Here we present a ketone (fluorenone) polymer that can be moulded as a plastic sheet and fixes hydrogen via a simple electrolytic hydrogenation at −1.5 V (versus Ag/AgCl) in water at room temperature. The hydrogenated alcohol derivative (the fluorenol polymer) reversibly releases hydrogen by heating (80 °C) in the presence of an aqueous iridium catalyst. Both the use of a ketone polymer and the efficient hydrogen fixing with water as a proton source are completely different from other (de)hydrogenated compounds and hydrogenation processes. The easy handling and mouldable polymers could suggest a pocketable hydrogen carrier. Using hydrogen efficiently requires safe carriers and reversible storage. Here, Nishide and others develop a ketone based polymer that can fix hydrogen by electrolytic hydrogenation in water and reversibly release it via heating and the use of an iridium catalyst.
Collapse
Affiliation(s)
- Ryo Kato
- Department of Applied Chemistry, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Keisuke Yoshimasa
- Department of Applied Chemistry, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Tatsuya Egashira
- Department of Applied Chemistry, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Takahiro Oya
- Department of Applied Chemistry, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Kenichi Oyaizu
- Department of Applied Chemistry, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Hiroyuki Nishide
- Department of Applied Chemistry, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| |
Collapse
|
6
|
Schmidt D, Häupler B, Hager MD, Schubert US. Poly(DCAQI): Synthesis and characterization of a new redox-active polymer. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Daniel Schmidt
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 Jena 07743 Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena; Philosophenweg 7a Jena 07743 Germany
| | - Bernhard Häupler
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 Jena 07743 Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena; Philosophenweg 7a Jena 07743 Germany
| | - Martin D. Hager
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 Jena 07743 Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena; Philosophenweg 7a Jena 07743 Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 Jena 07743 Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena; Philosophenweg 7a Jena 07743 Germany
| |
Collapse
|
7
|
Kawai T, Oyaizu K, Nishide H. High-Density and Robust Charge Storage with Poly(anthraquinone-substituted norbornene) for Organic Electrode-Active Materials in Polymer–Air Secondary Batteries. Macromolecules 2015. [DOI: 10.1021/ma502396r] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Takuma Kawai
- Department of Applied Chemistry, Waseda University, Tokyo 169-8555, Japan
| | - Kenichi Oyaizu
- Department of Applied Chemistry, Waseda University, Tokyo 169-8555, Japan
| | - Hiroyuki Nishide
- Department of Applied Chemistry, Waseda University, Tokyo 169-8555, Japan
| |
Collapse
|
8
|
Oyaizu K, Tatsuhira H, Nishide H. Facile charge transport and storage by a TEMPO-populated redox mediating polymer integrated with polyaniline as electrical conducting path. Polym J 2014. [DOI: 10.1038/pj.2014.124] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Häupler B, Ignaszak A, Janoschka T, Jähnert T, Hager MD, Schubert US. Poly(methacrylates) with Pendant Benzoquinone Units - Monomer Synthesis, Polymerization, and Electrochemical Behavior: Potential New Polymer Systems for Organic Batteries. MACROMOL CHEM PHYS 2014. [DOI: 10.1002/macp.201400045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Bernhard Häupler
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstraße 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
| | - Anna Ignaszak
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstraße 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
| | - Tobias Janoschka
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstraße 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
| | - Thomas Jähnert
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstraße 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
| | - Martin D. Hager
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstraße 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstraße 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Dutch Polymer Institute (DPI); P.O. Box 902 5600 AX Eindhoven The Netherlands
| |
Collapse
|
10
|
Oyaizu K, Hayo N, Sasada Y, Kato F, Nishide H. Enhanced bimolecular exchange reaction through programmed coordination of a five-coordinate oxovanadium complex for efficient redox mediation in dye-sensitized solar cells. Dalton Trans 2013; 42:16090-5. [DOI: 10.1039/c3dt51698a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|