1
|
Bukharbayeva F, Zharmagambetova A, Talgatov E, Auyezkhanova A, Akhmetova S, Jumekeyeva A, Naizabayev A, Kenzheyeva A, Danilov D. The Synthesis of Green Palladium Catalysts Stabilized by Chitosan for Hydrogenation. Molecules 2024; 29:4584. [PMID: 39407514 PMCID: PMC11477545 DOI: 10.3390/molecules29194584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/02/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
The proposed paper describes a simple and environmentally friendly method for the synthesis of three-component polymer-inorganic composites, which includes the modification of zinc oxide or montmorillonite (MMT) with chitosan (CS), followed by the immobilization of palladium on the resulting two-component composites. The structures and properties of the obtained composites were characterized by physicochemical methods (IRS, TEM, XPS, SEM, EDX, XRD, BET). Pd-CS species covered the surface of inorganic materials through two different mechanisms. The interaction of chitosan polyelectrolyte with zinc oxide led to the deprotonation of its amino groups and deposition on the surface of ZnO. The immobilization of Pd on CS/ZnO occurred by the hydrolysis of [PdCl4]2-, followed by forming PdO particles by interacting with amino groups of chitosan. In the case of CS/MMT, protonated amino groups of CS interacted with negative sites of MMT, forming a positively charged CS/MMT composite. Furthermore, [PdCl4]2- interacted with the -NH3+ sites of CS/MMT through electrostatic force. According to TEM studies of 1%Pd-CS/ZnO, the presence of Pd nanoclusters composed of smaller Pd nanoparticles of 3-4 nm in size were observed on different sites of CS/ZnO. For 1%Pd-CS/MMT, Pd nanoparticles with sizes of 2 nm were evenly distributed on the support surface. The prepared three-component CS-inorganic composites were tested through the hydrogenation of 2-propen-1-ol and acetylene compounds (phenylacetylene, 2-hexyn-1-ol) under mild conditions (T-40 °C, PH2-1 atm). It was shown that the efficiency of 1%Pd-CS/MMT is higher than that of 1%Pd-CS/ZnO, which can be explained by the formation of smaller Pd particles that are evenly distributed on the support surface. The mechanism of 2-hexyn-1-ol hydrogenation over an optimal 1%Pd-CS/MMT catalyst was proposed.
Collapse
Affiliation(s)
- Farida Bukharbayeva
- Laboratory of Organic Catalysis, D.V. Sokolsky Institute of Fuel, Catalysis, and Electrochemistry, Kunaev Str. 142, Almaty 050010, Kazakhstan
| | - Alima Zharmagambetova
- Laboratory of Organic Catalysis, D.V. Sokolsky Institute of Fuel, Catalysis, and Electrochemistry, Kunaev Str. 142, Almaty 050010, Kazakhstan
| | - Eldar Talgatov
- Laboratory of Organic Catalysis, D.V. Sokolsky Institute of Fuel, Catalysis, and Electrochemistry, Kunaev Str. 142, Almaty 050010, Kazakhstan
| | - Assemgul Auyezkhanova
- Laboratory of Organic Catalysis, D.V. Sokolsky Institute of Fuel, Catalysis, and Electrochemistry, Kunaev Str. 142, Almaty 050010, Kazakhstan
| | - Sandugash Akhmetova
- Laboratory of Organic Catalysis, D.V. Sokolsky Institute of Fuel, Catalysis, and Electrochemistry, Kunaev Str. 142, Almaty 050010, Kazakhstan
| | - Aigul Jumekeyeva
- Laboratory of Organic Catalysis, D.V. Sokolsky Institute of Fuel, Catalysis, and Electrochemistry, Kunaev Str. 142, Almaty 050010, Kazakhstan
| | - Akzhol Naizabayev
- Laboratory of Organic Catalysis, D.V. Sokolsky Institute of Fuel, Catalysis, and Electrochemistry, Kunaev Str. 142, Almaty 050010, Kazakhstan
| | - Alima Kenzheyeva
- Laboratory of Organic Catalysis, D.V. Sokolsky Institute of Fuel, Catalysis, and Electrochemistry, Kunaev Str. 142, Almaty 050010, Kazakhstan
| | - Denis Danilov
- Interdisciplinary Resource Center for Nanotechnology, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia
| |
Collapse
|
2
|
Safajoo S, Sadeghi E, Noroozi R, Mohammadi R, Moradi L, Razmjoo F, Paimard G. Synthesis of a new thiourea-polygalacturonic acid nanocomplex adsorbent for removing patulin from apple juice simulator and apple juice. J Verbrauch Lebensm 2022. [DOI: 10.1007/s00003-022-01370-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
Liang WL, Liao JS, Qi JR, Jiang WX, Yang XQ. Physicochemical characteristics and functional properties of high methoxyl pectin with different degree of esterification. Food Chem 2021; 375:131806. [PMID: 34933235 DOI: 10.1016/j.foodchem.2021.131806] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 12/26/2022]
Abstract
Moderate alkali de-esterification can change the physicochemical characteristics and thus the functional properties of high methoxyl pectin (HMP). The results revealed that de-esterification could increase negative charges (Zeta potential from -21 to -31 mV), decrease molecular weight (from 448 to 136 kDa) and apparent viscosity of HMP. Homogalacturonan (HG) content decreased (from 62% to 49%) while rhamnogalacturonan Ⅰ (RG-Ⅰ) content increased (from 32% to 46%) after de-esterification. The group characteristics of HMP with different degree of esterification (DE) were similar and no obvious impact was made on degree of crystallinity by alkali de-esterification. A conformation transition of HMP molecule implied by Congo red test were occurred as the DE decreased. With the decrease of DE, the molecular structure of HMP became shorter and smaller, and the entanglement was weaker. The de-esterification caused slight decrease of thermal stability. Alkali de-esterification would weaken the gel property and the emulsifying ability of HMP.
Collapse
Affiliation(s)
- Wan-Ling Liang
- Research and Development Center of Food Proteins, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, PR China
| | - Jin-Song Liao
- Guangzhou Laimeng Biotechnology Co. Ltd., Guangzhou 510640, PR China; School of Life Sciences, South China Normal University, Guangzhou 510640, PR China
| | - Jun-Ru Qi
- Research and Development Center of Food Proteins, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, PR China.
| | - Wen-Xin Jiang
- Research and Development Center of Food Proteins, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, PR China
| | - Xiao-Quan Yang
- Research and Development Center of Food Proteins, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, PR China
| |
Collapse
|
5
|
Effect of Polyethylene Glycol on the Structure and Catalytic Properties of 1% Pd/ZnO Nanocomposites in the Selective Hydrogenation of Acetylenic Alcohols. THEOR EXP CHEM+ 2018. [DOI: 10.1007/s11237-018-9572-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
6
|
Zhang W, Li M, Fan X, Sun X, He G. Preparation and in vitro evaluation of hydrophobic-modified montmorillonite stabilized pickering emulsion for overdose acetaminophen removal. CAN J CHEM ENG 2017. [DOI: 10.1002/cjce.22924] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wenjun Zhang
- State Key Laboratory of Fine Chemicals; School of Petroleum and Chemical Engineering; Dalian University of Technology; Panjin, 124221 China
| | - Min Li
- State Key Laboratory of Fine Chemicals; School of Petroleum and Chemical Engineering; Dalian University of Technology; Panjin, 124221 China
| | - Xianlin Fan
- State Key Laboratory of Fine Chemicals; School of Petroleum and Chemical Engineering; Dalian University of Technology; Panjin, 124221 China
| | - Xiao Sun
- State Key Laboratory of Fine Chemicals; School of Petroleum and Chemical Engineering; Dalian University of Technology; Panjin, 124221 China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals; School of Petroleum and Chemical Engineering; Dalian University of Technology; Panjin, 124221 China
| |
Collapse
|