1
|
Sharma R, Rana DS, Awasthi A, Singh D, Ibrahim AA, Umar A, Baskoutas S. Nitrogen functionalized biomass derived mesoporous carbon nanomaterials for electrochemical detection of lead (II) ions. Heliyon 2024; 10:e39090. [PMID: 39506954 PMCID: PMC11538739 DOI: 10.1016/j.heliyon.2024.e39090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/15/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
This study has explored the sustainable solution after designing an economical metal-free biomass-derived nanocarbon for the selective sensing of lead. The nitrogen and sulfur-rich mesoporous nanocarbon is designed through a facile hydrothermal-assisted thermal annealing method. The high-temperature treatment gave nanocarbon unique carbon dot decorated layered morphology, while nitrogen and sulfur precursor thiourea and melamine strengthened the nanomaterial stability, sensitivity, and selectivity toward lead metal ions. The high specific surface area of mesoporous nanocarbon viz., 1671.93 m2/g with the pore width and pore volume of 2.02 nm and 0.476 cm3/g has enhanced the conductivity of as-synthesized sensor, which helps in increasing sensitivity toward lead. The high conductivity was also confirmed through cyclic voltammetry, where an 80 % increment in current was observed in the case of the modified electrode when compared with bare GCE. The differential pulse normal voltammetry and differential pulse anodic stripping voltammetry were performed to calculate the detection limit, where an excellent detection limit of 22 nM was obtained from the DPASV technique. Moreover, the nanomaterial was also tested for detecting lead in tap water. The as-synthesized nanocomposite is highly efficient and selective for the detection of lead. This study will motivate the researchers to engineer sustainable and efficient devices for sensing metal pollutants.
Collapse
Affiliation(s)
- Ritika Sharma
- Department of Environmental Sciences, Central University of Himachal Pradesh, Dharamshala, 176215, HP, India
| | | | - Abhishek Awasthi
- Department of Biotechnology, School of Basic and Applied Sciences, Maharaja Agrasen University, Baddi, 174103, HP, India
| | - Dilbag Singh
- Department of Environmental Sciences, Central University of Himachal Pradesh, Dharamshala, 176215, HP, India
| | - Ahmed A. Ibrahim
- Department of Chemistry, Faculty of Science and Arts, and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Kingdom of Saudi Arabia
- STEM Pioneers Training Lab, Najran University, Najran, 11001, Kingdom of Saudi Arabia
| | - Ahmad Umar
- Department of Chemistry, Faculty of Science and Arts, and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Kingdom of Saudi Arabia
- STEM Pioneers Training Lab, Najran University, Najran, 11001, Kingdom of Saudi Arabia
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Sotirios Baskoutas
- Department of Materials Science, University of Patras, 26504, Patras, Greece
| |
Collapse
|
2
|
Lei B, Zhou G, Gong Z, Liu C, Zhou Y, Guro VP, Sun Y, Sheng J, Dong F. Dynamically Cyclic Fe 2+/Fe 3+ Active Sites as Electron and Proton-Feeding Centers Boosting CO 2 Photoreduction Powered by Benzyl Alcohol Oxidation. RESEARCH (WASHINGTON, D.C.) 2024; 8:0567. [PMID: 39801506 PMCID: PMC11717996 DOI: 10.34133/research.0567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/01/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025]
Abstract
Solar-driven CO2 photoreduction holds promise for sustainable fuel and chemical productions, but the complex proton-coupled multi-electron transfer processes and sluggish oxidation half-reaction kinetics substantially hinder its efficiency. Here, we devised a rational catalyst design to address these challenges by fabricating ferrocene carboxylic acid-functionalized Cs3Sb2Br9 nanocrystals (CSB-Fc NCs), which facilitate simultaneous benzyl alcohol oxidation and CO2 reduction reactions under visible-light irradiation. The synchronized proton-coupled electron transfer processes between the reduction and oxidation half-reactions on CSB-Fc NCs resulted in a 5-fold increase in the CO2 reduction rate (45.56 μmol g-1 h-1, 97.9% CO selectivity) and a 5.8-fold enhancement in benzyl alcohol conversion (97.7% selectivity for benzaldehyde) compared to the CSB. In situ Raman and ultraviolet-visible diffuse reflectance spectra revealed that the dynamic Fe2+/Fe3+ redox loop within the Fc unit serves as the actual active site, facilitating the activation of substrate molecules. More importantly, in situ attenuated total reflection Fourier transform infrared spectroscopy and gas chromatography-mass spectrometry spectroscopy, with isotope labeling of Deuteron-benzyl alcohol and 13CO2, confirmed that proton transfer from the hydroxyl group generates reactive protons at the Fe2+/Fe3+ site, enabling efficient CO2 photoreduction through subsequent protonation steps. This work offers a cost-effective and efficient approach for synergetic CO2 photoreduction driven by organic synthesis, advancing solar energy utilization.
Collapse
Affiliation(s)
- Ben Lei
- School of Resources and Environment, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
- Chengdu Zhihe Environmental Technology Co. Ltd., Chengdu 610207, China
- School of Material Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Gaofeng Zhou
- School of Resources and Environment, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Zhongyou Gong
- Chengdu Zhihe Environmental Technology Co. Ltd., Chengdu 610207, China
| | - Chao Liu
- Chengdu Zhihe Environmental Technology Co. Ltd., Chengdu 610207, China
| | - Ying Zhou
- School of New Energy and Materials,
Southwest Petroleum University, Chengdu 610500, China
| | - Vitaliy P. Guro
- Institute of General and Inorganic Chemistry,
Academy of Sciences of the Republic of Uzbekistan, Tashkent 100047, Uzbekistan
| | - Yanjuan Sun
- School of Resources and Environment, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jianping Sheng
- School of Resources and Environment, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Fan Dong
- School of Resources and Environment, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
3
|
Sarmet J, Leroux F, Taviot-Gueho C, Gerlach P, Douard C, Brousse T, Toussaint G, Stevens P. Interleaved Electroactive Molecules into LDH Working on Both Electrodes of an Aqueous Battery-Type Device. Molecules 2023; 28:molecules28031006. [PMID: 36770682 PMCID: PMC9920818 DOI: 10.3390/molecules28031006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
By selecting two electroactive species immobilized in a layered double hydroxide backbone (LDH) host, one able to act as a positive electrode material and the other as a negative one, it was possible to match their capacity to design an innovative energy storage device. Each electrode material is based on electroactive species, riboflavin phosphate (RF) on one side and ferrocene carboxylate (FCm) on the other, both interleaved into a layered double hydroxide (LDH) host structure to avoid any possible molecule migration and instability. The intercalation of the electroactive guest molecules is demonstrated by X-ray diffraction with the observation of an interlayer LDH spacing of about 2 nm in each case. When successfully hosted into LDH interlayer space, the electrochemical behavior of each hybrid assembly was scrutinized separately in aqueous electrolyte to characterize the redox reaction occurring upon cycling and found to be a rapid faradic type. Both electrode materials were placed face to face to achieve a new aqueous battery (16C rate) that provides a first cycle-capacity of about 7 mAh per gram of working electrode material LDH/FCm at 10 mV/s over a voltage window of 2.2 V in 1M sodium acetate, thus validating the hybrid LDH host approach on both electrode materials even if the cyclability of the assembly has not yet been met.
Collapse
Affiliation(s)
- Julien Sarmet
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Fabrice Leroux
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France
- Correspondence:
| | - Christine Taviot-Gueho
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Patrick Gerlach
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, 2 rue de la Houssinière BP32229, CEDEX 3, F-44322 Nantes, France
- Réseau sur le Stockage Electrochimique de l’Energie (RS2E), CNRS FR 3459, 33 rue Saint Leu, CEDEX, F-80039 Amiens, France
| | - Camille Douard
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, 2 rue de la Houssinière BP32229, CEDEX 3, F-44322 Nantes, France
- Réseau sur le Stockage Electrochimique de l’Energie (RS2E), CNRS FR 3459, 33 rue Saint Leu, CEDEX, F-80039 Amiens, France
| | - Thierry Brousse
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, 2 rue de la Houssinière BP32229, CEDEX 3, F-44322 Nantes, France
- Réseau sur le Stockage Electrochimique de l’Energie (RS2E), CNRS FR 3459, 33 rue Saint Leu, CEDEX, F-80039 Amiens, France
| | - Gwenaëlle Toussaint
- Réseau sur le Stockage Electrochimique de l’Energie (RS2E), CNRS FR 3459, 33 rue Saint Leu, CEDEX, F-80039 Amiens, France
- EDF R&D, Department LME, Avenue des Renardières, CEDEX, F-77818 Moret-sur-Loing, France
| | - Philippe Stevens
- Réseau sur le Stockage Electrochimique de l’Energie (RS2E), CNRS FR 3459, 33 rue Saint Leu, CEDEX, F-80039 Amiens, France
- EDF R&D, Department LME, Avenue des Renardières, CEDEX, F-77818 Moret-sur-Loing, France
| |
Collapse
|
4
|
El-Maghrabi N, Fawzy M, Mahmoud AED. Efficient Removal of Phosphate from Wastewater by a Novel Phyto-Graphene Composite Derived from Palm Byproducts. ACS OMEGA 2022; 7:45386-45402. [PMID: 36530337 PMCID: PMC9753538 DOI: 10.1021/acsomega.2c05985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/22/2022] [Indexed: 05/17/2023]
Abstract
The increased demand for clean water especially in overpopulated countries is of great concern; thus, the development of eco-friendly and cost-effective techniques and materials that can remediate polluted water for possible reuse in agricultural purposes can offer a life-saving solution to improve human welfare, especially in view of climate change impacts. In the current study, the agricultural byproducts of palm trees have been used for the first time as a carbon source to produce graphene functionalized with ferrocene in a composite form to enhance its water treatment potential. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy, X-ray diffraction (XRD), ultraviolet-visible, Fourier transform infrared spectroscopy, zeta potential, thermogravimetric analysis, and Raman techniques have been used to characterize the produced materials. SEM investigations confirmed the formation of multiple sheets of the graphene composite. Data collected from the zeta potential revealed that graphene was supported with a negative surface charge that maintains its stability while XRD elucidated that graphene characteristic peaks were evident at 2θ = 22.4 and 22.08° using palm leaves and fibers, respectively. Batch adsorption experiments were conducted to find out the most suitable conditions to remove PO4 3- from wastewater by applying different parameters, including pH, adsorbent dose, initial concentration, and time. Their effect on the adsorption process was also investigated. Results demonstrated that the best adsorption capacity was 58.93 mg/g (removal percentage: 78.57%) using graphene derived from palm fibers at 15 mg L-1 initial concentration, pH = 3, dose = 10 mg, and 60 min contact time. Both linear and non-linear forms of kinetic and isotherm models were investigated. The adsorption process obeyed the pseudo-second-order kinetic model and was well fitted to the Langmuir isotherm.
Collapse
Affiliation(s)
- Nourhan El-Maghrabi
- Environmental
Sciences Department, Faculty of Science, Alexandria University, Alexandria21511, Egypt
- Green
Technology Group, Faculty of Science, Alexandria
University, Alexandria21511, Egypt
- ,
| | - Manal Fawzy
- Environmental
Sciences Department, Faculty of Science, Alexandria University, Alexandria21511, Egypt
- Green
Technology Group, Faculty of Science, Alexandria
University, Alexandria21511, Egypt
- National
Biotechnology Network of Expertise (NBNE), Academy of Scientific Research and Technology (ASRT), Cairo11694, Egypt
| | - Alaa El Din Mahmoud
- Environmental
Sciences Department, Faculty of Science, Alexandria University, Alexandria21511, Egypt
- Green
Technology Group, Faculty of Science, Alexandria
University, Alexandria21511, Egypt
| |
Collapse
|
5
|
Payami E, Teimuri-Mofrad R. Ternary nanocomposite of GQDs-PolyFc/Fe3O4/PANI: Design, synthesis, and applied for electrochemical energy storage. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Baipaywad P, Ryu N, Im SS, Lee U, Son HB, Kim WJ, Park H. Facile preparation of poly( N-isopropylacrylamide)/graphene oxide nanocomposites for chemo-photothermal therapy. Des Monomers Polym 2022; 25:245-253. [PMID: 36017475 PMCID: PMC9397426 DOI: 10.1080/15685551.2022.2111854] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/07/2022] [Indexed: 11/03/2022] Open
Abstract
Carbon-based nanomaterials, such as carbon nanotubes, fullerenes, nanodiamonds, and graphene, have been investigated for various biomedical applications, including biological imaging, photothermal therapy, drug/gene delivery, cancer therapy, biosensors, and electrochemical sensors. Graphene oxide (GO) has unique physicochemical properties and can be used to restore conductivity through oxidation. In this study, we developed poly(N-isopropylacrylamide) (PNIPAM)-based nanogel systems containing GO for controlled in vitro drug delivery. The photothermal effects of the PNIPAM/GO- and PNIPAMAAM/GO-based nanogel systems were enhanced. The release of DOX from the PNIPAM/GO-based nanogel was achieved using the photothermal effect of near-infrared irradiation. Using a Cell Counting Kit-8 assay, the cytotoxicity of all conditions demonstrated that the PNIPAM composite-based nanogels were biocompatible with no significance.
Collapse
Affiliation(s)
- Phornsawat Baipaywad
- Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, Thailand
- Department of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Naeun Ryu
- Department of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Soo-Seok Im
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Ukjae Lee
- Department of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Hyung Bin Son
- Department of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Won Jong Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Hansoo Park
- Department of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Kusuma S, Patil KN, Srinivasappa PM, Chaudhari N, Soni A, Nabgan W, Jadhav AH. Ferrocene anchored activated carbon as a versatile catalyst for the synthesis of 1,5-benzodiazepines via one-pot environmentally benign conditions. RSC Adv 2022; 12:14740-14756. [PMID: 35702231 PMCID: PMC9112409 DOI: 10.1039/d2ra00202g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/07/2022] [Indexed: 11/21/2022] Open
Abstract
1,5-Benzodiazepine is considered as one of the central moieties in the core unit of most drug molecules. Construction of such moieties with a new C–N bond under solvent-free and mild reaction conditions is challenging. Herein, we present a benign protocol for one pot synthesis of 1,5-benzodiazepine derivatives by using ferrocene (FC) supported activated carbon (AC) as a heterogeneous catalyst. The catalyst FC/AC was characterized by several analytical and spectroscopic techniques to reveal its physicochemical properties and for structural confirmation. The synthesized catalyst FC/AC was explored for its catalytic activity in the synthesis of 1,5-benzodiazepines through condensation of o-phenylenediamine (OPDA) and ketones (aromatic and aliphatic) under solvent-free conditions. The robust 10 wt% FC/AC catalyst demonstrated appreciable activity with 99% conversion of diamines and 91% selectivity towards the synthesis of the desired benzodiazepine derivatives under solvent-free conditions at 90 °C in 8 h. Additionally, several reaction parameters such as catalyst loading, reaction temperature, effect of reaction time and effect of different solvents on selectivity were also studied and discussed in-depth. To understand the scope of the reaction, several symmetrical and unsymmetrical ketones along with different substituted diamines were tested with the synthesized catalyst. All prepared reaction products were obtained in good to efficient yields and were isolated and identified as 1,5-benzodiazepines and no side products were observed. The obtained catalyst characterization data and the activity studies suggested that, the synergetic effect occurred due to the uniform dispersion of ferrocene over the AC surface with numerous acidic sites which triggered the reaction of diamine and ketone to form the corresponding benzodiazepine derivative and the same was illustrated in the plausible mechanism. Furthermore, the synthesized catalyst was tested for leaching and recyclability, and the results confirmed that catalyst can be used for up to six consecutive cycles without much loss in the catalytic activity and its morphology which makes the process sustainable and economical for scale-up production. The present method offered several advantages such as an ecofriendly method, excellent yields, sustainable catalytic transformation, easy work-up and isolation of products, and quick recovery of catalyst. 1,5-Benzodiazepine is considered as one of the central moieties in the core unit of most drug molecules.![]()
Collapse
Affiliation(s)
- Suman Kusuma
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus Bangalore 562112 India .,Aragen Life Science Pvt. Ltd. (GVK Bioscience Pvt. Ltd.) Plot No. 284-A(Part) Bengaluru-562106 India
| | - Komal N Patil
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus Bangalore 562112 India
| | | | - Nitin Chaudhari
- Department of Chemistry, School of Technology, Pandit Deendayal Energy University Gandhinagar Gujarat 382007 India
| | - Ajay Soni
- Aragen Life Science Pvt. Ltd. (GVK Bioscience Pvt. Ltd.) Plot No. 284-A(Part) Bengaluru-562106 India
| | - Walid Nabgan
- School of Chemical and Energy Engineering, Universiti Teknologi Malaysia Johor 81310 Malaysia.,Departament d'Enginyeria Quimica, Universitat Rovira i Virgili Av Paisos Catalans 26 43007 Tarragona Spain
| | - Arvind H Jadhav
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus Bangalore 562112 India
| |
Collapse
|
8
|
Parisa Baghbanpoor, Shishehbore MR, Beitollahi H, Sheibani A. The Application of Ferrocene Derivative and CeO–ZnO Nanocomposite-Modified Carbon Paste Electrode for Simultaneous Detection of Penicillamine and Tryptophan. RUSS J ELECTROCHEM+ 2022. [DOI: 10.1134/s1023193522040048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Disposable Electrochemical Sensor for Food Colorants Detection by Reduced Graphene Oxide and Methionine Film Modified Screen Printed Carbon Electrode. Molecules 2021; 26:molecules26082312. [PMID: 33923482 PMCID: PMC8072545 DOI: 10.3390/molecules26082312] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
A facile synthesis of reduced graphene oxide (rGO) and methionine film modified screen printed carbon electrode (rGO-methionine/SPCE) was proposed as a disposable sensor for determination of food colorants including amaranth, tartrazine, sunset yellow, and carminic acid. The fabrication process can be achieved in only 2 steps including drop-casting of rGO and electropolymerization of poly(L-methionine) film on SPCE. Surface morphology of modified electrode was studied by scanning electron microscopy (SEM). This work showed a successfully developed novel disposable sensor for detection of all 4 dyes as food colorants. The electrochemical behavior of all 4 food colorants were investigated on modified electrodes. The rGO-methionine/SPCE significantly enhanced catalytic activity of all 4 dyes. The pH value and accumulation time were optimized to obtain optimal condition of each colorant. Differential pulse voltammetry (DPV) was used for determination, and two linear detection ranges were observed for each dye. Linear detection ranges were found from 1 to 10 and 10 to 100 µM for amaranth, 1 to 10 and 10 to 85 µM for tartrazine, 1 to 10 and 10 to 50 µM for sunset yellow, and 1 to 20 and 20 to 60 µM for carminic acid. The limit of detection (LOD) was calculated at 57, 41, 48, and 36 nM for amaranth, tartrazine, sunset yellow, and carminic acid, respectively. In addition, the modified sensor also demonstrated high tolerance to interference substances, good repeatability, and high performance for real sample analysis.
Collapse
|
10
|
Tajik S, Beitollahi H, Hosseinzadeh R, Aghaei Afshar A, Varma RS, Jang HW, Shokouhimehr M. Electrochemical Detection of Hydrazine by Carbon Paste Electrode Modified with Ferrocene Derivatives, Ionic Liquid, and CoS 2-Carbon Nanotube Nanocomposite. ACS OMEGA 2021; 6:4641-4648. [PMID: 33644570 PMCID: PMC7905812 DOI: 10.1021/acsomega.0c05306] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/25/2021] [Indexed: 05/05/2023]
Abstract
The electrocatalytic performance of carbon paste electrode (CPE) modified with ferrocene-derivative (ethyl2-(4-ferrocenyl[1,2,3]triazol-1-yl)acetate), ionic liquid (n-hexyl-3-methylimidazolium hexafluorophosphate), and CoS2-carbon nanotube nanocomposite (EFTA/IL/CoS2-CNT/CPE) was investigated for the electrocatalytic detection of hydrazine. CoS2-CNT nanocomposite was characterized by field emission scanning electron microscopy, X-ray powder diffraction, and transmission electron microscopy. According to the results of cyclic voltammetry, the EFTA/IL/CoS2-CNT-integrated CPE has been accompanied by greater catalytic activities for hydrazine oxidation compared to the other electrodes in phosphate buffer solution at a pH 7.0 as a result of the synergistic impact of fused ferrocene-derivative, IL, and nanocomposite. The sensor responded linearly with increasing concentration of hydrazine from 0.03 to 500.0 μM with a higher sensitivity (0.073 μA μM-1) and lower limit of detection (LOD, 0.015 μM). Furthermore, reasonable reproducibility, lengthy stability, and excellent selectivity were also attained for the proposed sensor. Finally, EFTA/IL/CoS2-CNT/CPE was applied for the detection of hydrazine in water samples, and good recoveries varied from 96.7 to 103.0%.
Collapse
Affiliation(s)
- Somayeh Tajik
- Research Center
for Tropical and Infectious Diseases, Kerman
University of Medical Sciences, Kerman 7617934111, Iran
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High
Technology and Environmental Sciences, Graduate
University of Advanced Technology, Kerman 7631818356, Iran
| | - Rahman Hosseinzadeh
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar 47416-1467, Iran
| | - Abbas Aghaei Afshar
- Research Center for Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 1234, Iran
| | - Rajender S. Varma
- Regional Center of Advanced Technologies
and Materials, Palacky University, Š lechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research
Institute of Advanced Materials, Seoul National
University, Seoul 08826, Republic of Korea
| | - Mohammadreza Shokouhimehr
- Department of Materials Science and Engineering, Research
Institute of Advanced Materials, Seoul National
University, Seoul 08826, Republic of Korea
| |
Collapse
|
11
|
Shi X, Chen M, Feng H, Zhou Z, Wu R, Li W, Liang J, Chen J, Li G. Glypican-3 electrochemical aptasensor based on reduced graphene oxide‐chitosan‐ferrocene deposition of platinum–palladium bimetallic nanoparticles. J APPL ELECTROCHEM 2021. [DOI: 10.1007/s10800-021-01534-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Gao Z, Zhang J, Zhang S, Lan D, Zhao Z, Kou K. Strategies for electromagnetic wave absorbers derived from zeolite imidazole framework (ZIF-67) with ferrocene containing polymers. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122679] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Ates M, Kuzgun O, Yildirim M, Ozkan H. rGO / MnO2 / Polyterthiophene ternary composite: pore size control, electrochemical supercapacitor behavior and equivalent circuit model analysis. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02183-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Beitollahi H, Khalilzadeh MA, Tajik S, Safaei M, Zhang K, Jang HW, Shokouhimehr M. Recent Advances in Applications of Voltammetric Sensors Modified with Ferrocene and Its Derivatives. ACS OMEGA 2020; 5:2049-2059. [PMID: 32064365 PMCID: PMC7016907 DOI: 10.1021/acsomega.9b03788] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/17/2020] [Indexed: 05/05/2023]
Abstract
This study is on current developments concerning ferrocene (FC) and its derivatives on the basis of electrochemical biosensors and sensors. The distinct physiochemical characteristics of FC have enabled the development of new sensor devices, specifically electrochemical sensors. Several articles have focused on the implementation of FC as an electrode constituent while discussing its electrochemical behavior. Furthermore, typical FC-design-based biosensors and sensors are considered as well as practical examples. The favorable design of FC-based biosensors and general sensors needs adequate control of their chemical and physical characteristics in addition to their surface immobilization and functionalization.
Collapse
Affiliation(s)
- Hadi Beitollahi
- Environment
Department, Institute of Science and High Technology and Environmental
Sciences, Graduate University of Advanced
Technology, Kerman, Iran
- E-mail: (H.W.J.)
| | - Mohammad A. Khalilzadeh
- Department
of Forest Biomaterials, College of Natural Resources, North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Somayeh Tajik
- Research
Center for Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohadeseh Safaei
- Environment
Department, Institute of Science and High Technology and Environmental
Sciences, Graduate University of Advanced
Technology, Kerman, Iran
| | - Kaiqiang Zhang
- Department
of Materials Science and Engineering, Research Institute of Advanced
Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Ho Won Jang
- Department
of Materials Science and Engineering, Research Institute of Advanced
Materials, Seoul National University, Seoul 08826, Republic of Korea
- E-mail: (H. W. Jang)
| | - Mohammadreza Shokouhimehr
- Department
of Materials Science and Engineering, Research Institute of Advanced
Materials, Seoul National University, Seoul 08826, Republic of Korea
- E-mail: (M.S.)
| |
Collapse
|
15
|
Matysiak-Brynda E, Sęk JP, Kasprzak A, Królikowska A, Donten M, Patrzalek M, Poplawska M, Nowicka AM. Reduced graphene oxide doping with nanometer-sized ferrocene moieties - New active material for glucose redox sensors. Biosens Bioelectron 2018; 128:23-31. [PMID: 30616214 DOI: 10.1016/j.bios.2018.12.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/12/2018] [Accepted: 12/14/2018] [Indexed: 02/08/2023]
Abstract
Herein, we present that the reduced graphene oxide (rGO) doped with nanometer-sized ferrocene moieties is a new, excellent active material for redox sensors. Two distinct approaches were utilized for the modification of rGO. The first method was based on the covalent decoration of rGO via the addition of azomethine ylide generated from the ferrocenecarboxaldehyde oxime. The second approach utilized the adsorption of 1,1'-ferrocenedicarboxylic acid on the graphene sheet via the π-π stacking. The morphology of the synthesized graphene materials was studied by application of microscopic techniques, whereas the Raman data allowed the characteristics of the tested materials in terms of their structural properties. The tested graphene materials doped with ferrocene moieties were used as a bioactive platform for glucose oxidase (GOx) immobilization. The enzyme was immobilized onto the rGO materials in two ways: (i) using a crosslinking agent - glutaraldehyde (GA) and (ii) by formation of the amide bonds between carboxylic groups of rGO-Fc(COOH)2 and amine groups from enzyme. Ferrocene moieties present at the graphene surface play the role of mediator in the electron transfer between the redox center of GOx and the electrode surface. The functionality of the constructed biosensors has been tested on real samples. The results of the recovery rates showed a satisfying degree of accuracy toward determination of glucose concentration. Examination of the potential interfering species has demonstrated favorable sensitivity and selectivity of the designed biosensor for the detection of glucose.
Collapse
Affiliation(s)
- Edyta Matysiak-Brynda
- Faculty of Chemistry, University of Warsaw, Pasteura 1 Str., PL-02-093 Warsaw, Poland.
| | - Jakub P Sęk
- Faculty of Chemistry, University of Warsaw, Pasteura 1 Str., PL-02-093 Warsaw, Poland
| | - Artur Kasprzak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3 Str., PL-00-664 Warsaw, Poland
| | - Agata Królikowska
- Faculty of Chemistry, University of Warsaw, Pasteura 1 Str., PL-02-093 Warsaw, Poland
| | - Mikolaj Donten
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101 Str., 02-089 Warsaw, Poland
| | - Michał Patrzalek
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101 Str., 02-089 Warsaw, Poland
| | - Magdalena Poplawska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3 Str., PL-00-664 Warsaw, Poland
| | - Anna M Nowicka
- Faculty of Chemistry, University of Warsaw, Pasteura 1 Str., PL-02-093 Warsaw, Poland
| |
Collapse
|