1
|
Thakur S, Badoni A, Samriti, Sharma P, Ojha A, Swart HC, Kuznetsov AY, Prakash J. Standalone Highly Efficient Graphene Oxide as an Emerging Visible Light-Driven Photocatalyst and Recyclable Adsorbent for the Sustainable Removal of Organic Pollutants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18486-18502. [PMID: 39172065 DOI: 10.1021/acs.langmuir.4c01727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Carbon-based nanostructures are promising eco-friendly multifunctional nanomaterials because of their tunable surface and optoelectronic properties for a variety of energy and environmental applications. The present study focuses on the synthesis of graphene oxide (GO) with particular emphasis on engineering its surface and optical properties for making it an excellent adsorbent as well as a visible light-active photocatalyst. It was achieved by modifying the improved Hummers method through optimizing the synthesis parameters involved in the oxidation process. This controlled synthesis allows for systematic tailoring of structural, optical, and surface functionality, leading to improved adsorption and photocatalytic properties for the sustainable removal of organic pollutants in water treatment. Several spectroscopic and microscopic characterization techniques, such as XRD, SEM, Raman, UV-visible, FTIR, TEM, XPS, BET, etc. were employed to analyze the degree of oxidation, surface chemistry/functionalization, morphological, optical, and structural properties of the synthesized GO nanostructures. The analyses showed excellent surface functionality with surface active sites for better adsorptive removal and a tunable band gap from 2.51 to 2.76 eV exhibiting excellent natural sunlight activity (>99%) for photocatalytic removal of the organic pollutant. Various adsorption isotherms have been studied with excellent adsorption capability (Qmax = 454.54 mg/g) as compared to the literature. The study introduces GO both as a proficient stand-alone (sole) nanoadsorbent as well as a nanophotocatalyst for the efficient removal of organic dye pollutants in water treatment. Additionally, the article highlights the sustainable solar light-induced green chemistry aspects of GO as an excellent recyclable adsorbent as a result of its self-cleaning ability under natural sunlight, demonstrating its potential in real eco-friendly environmental and practical applications.
Collapse
Affiliation(s)
- Sahil Thakur
- Department of Chemistry, National Institute of Technology Hamirpur, Hamirpur (H.P.) 177005, India
| | - Ayush Badoni
- Department of Chemistry, National Institute of Technology Hamirpur, Hamirpur (H.P.) 177005, India
| | - Samriti
- Department of Chemistry, National Institute of Technology Hamirpur, Hamirpur (H.P.) 177005, India
| | - Pratibha Sharma
- Department of Chemistry, National Institute of Technology Hamirpur, Hamirpur (H.P.) 177005, India
| | - Abhijeet Ojha
- Department of Materials Science and Engineering, National Institute of Technology Hamirpur, Hamirpur (H.P.) 177005, India
| | - Hendrik C Swart
- Department of Physics, University of the Free State, Bloemfontein 9301, Republic of South Africa
| | - Andrej Yu Kuznetsov
- Department of Physics, Centre for Materials Science and Nanotechnology, University of Oslo, Oslo N-0316, Norway
| | - Jai Prakash
- Department of Chemistry, National Institute of Technology Hamirpur, Hamirpur (H.P.) 177005, India
| |
Collapse
|
2
|
Ingrassia EB, Lemos ES, Escudero LB. Treatment of textile wastewater using carbon-based nanomaterials as adsorbents: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:91649-91675. [PMID: 37525081 DOI: 10.1007/s11356-023-28908-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/17/2023] [Indexed: 08/02/2023]
Abstract
Waste derived from the textile industry can contain a wide variety of pollutants of organic and inorganic natures, such as dyes (e.g., acid, basic, reactive, mordant dyes) and toxic metals (e.g., lead, chromium, cadmium). The presence of pollutants at high concentrations in textile waste makes them relevant sources of pollution in the environment. To solve this problem, various technologies have been developed for the removal of pollutants from these matrices. Thus, adsorption emerges as an efficient alternative for textile waste remediation, providing advantages as simplicity of operation, economy, possibility of using different adsorbent materials, and developing on-line systems that allow the reuse of the adsorbent during several adsorption/desorption cycles. This review will initially propose an introduction to the adsorption world, its fundamentals, and aspects related to kinetics, equilibrium, and thermodynamics. The possible mechanisms through which a pollutant can be retained on an adsorbent will be explained. The analytical techniques that offer valuable information to characterize the solid phases as well as each adsorbate/adsorbent system will be also commented. The most common synthesis techniques to obtain carbon nano-adsorbents have been also presented. In addition, the latest advances about the use of these adsorbents for the removal of pollutants from textile waste will be presented and discussed. The contributions reported in this manuscript demonstrated the use of highly efficient carbon-based nano-adsorbents for the removal of both organic and inorganic pollutants, reaching removal percentages from 65 to 100%.
Collapse
Affiliation(s)
- Estefanía Belén Ingrassia
- Laboratory of Environmental Biotechnology (BioTA), Interdisciplinary Institute of Basic Sciences (ICB), UNCUYO - CONICET, Faculty of Natural and Exact Sciences, National University of Cuyo, Padre Contreras 1300, 5500, Mendoza, Argentina
| | - Eliana Soledad Lemos
- Laboratory of Environmental Biotechnology (BioTA), Interdisciplinary Institute of Basic Sciences (ICB), UNCUYO - CONICET, Faculty of Natural and Exact Sciences, National University of Cuyo, Padre Contreras 1300, 5500, Mendoza, Argentina
| | - Leticia Belén Escudero
- Laboratory of Environmental Biotechnology (BioTA), Interdisciplinary Institute of Basic Sciences (ICB), UNCUYO - CONICET, Faculty of Natural and Exact Sciences, National University of Cuyo, Padre Contreras 1300, 5500, Mendoza, Argentina.
| |
Collapse
|
3
|
Han Z, Sun L, Chu Y, Wang J, Wei C, Liu Y, Jiang Q, Han C, Yan H, Song X. Ultrasonication-Tailored Graphene Oxide of Varying Sizes in Multiple-Equilibrium-Route-Enhanced Adsorption for Aqueous Removal of Acridine Orange. Molecules 2023; 28:4179. [PMID: 37241919 PMCID: PMC10223085 DOI: 10.3390/molecules28104179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Graphene oxide (GO) has shown remarkable performance in the multiple-equilibrium-route adsorption (MER) process, which is characterized by further activation of GO through an in-situ reduction process based on single-equilibrium-route adsorption (SER), generating new adsorption sites and achieving an adsorption capacity increase. However, the effect of GO on MER adsorption in lateral size and thickness is still unclear. Here, GO sheets were sonicated for different lengths of time, and the adsorption of MER and SER was investigated at three temperatures to remove the typical cationic dye, acridine orange (AO). After sonication, we found that freshly prepared GO was greatly reduced in lateral size and thickness. In about 30 min, the thickness of GO decreased dramatically from several atomic layers to fewer atomic layers to a single atomic layer, which was completely stripped off; after that, the monolayer lateral size reduction dominated until it remained constant. Surface functional sites, such as hydroxyl groups, showed little change in the experiments. However, GO mainly reduces the C=O and C-O bonds in MER, except for the conjugated carbon backbone (C-C). The SER adsorption kinetics of all temperatures fitted the pseudo-first-order and pseudo-second-order models, yet room temperature preferred the latter. An overall adsorption enhancement appeared as sonication time, but the equilibrium capacity of SER GO generally increased with thickness and decreased with the single-layer lateral size, while MER GO conversed concerning the thickness. The escalated temperature facilitated the exfoliation of GO regarding the adsorption mechanism. Thus, the isotherm behaviors of the SER GO changed from the Freundlich model to Langmuir as size and temperature changed, while the MER GO were all of the Freundlich. A record capacity of ~4.3 g of AO per gram of GO was obtained from the MER adsorption with a sixty-minute ultrasonicated GO at 313.15 K. This work promises a cornerstone for MER adsorption with GO as an adsorbent.
Collapse
Affiliation(s)
- Zhaoyang Han
- Key Laboratory of Advanced Functional Materials, Institute of Advanced Energy Materials and Devices, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Ling Sun
- Key Laboratory of Advanced Functional Materials, Institute of Advanced Energy Materials and Devices, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
- Beijing Guyue New Materials Research Institute, Beijing University of Technology, Beijing 100124, China
| | - Yingying Chu
- Key Laboratory of Advanced Functional Materials, Institute of Advanced Energy Materials and Devices, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Jing Wang
- Key Laboratory of Advanced Functional Materials, Institute of Advanced Energy Materials and Devices, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Chenyu Wei
- Key Laboratory of Advanced Functional Materials, Institute of Advanced Energy Materials and Devices, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Yifang Liu
- Key Laboratory of Advanced Functional Materials, Institute of Advanced Energy Materials and Devices, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Qianlei Jiang
- Key Laboratory of Advanced Functional Materials, Institute of Advanced Energy Materials and Devices, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Changbao Han
- Key Laboratory of Advanced Functional Materials, Institute of Advanced Energy Materials and Devices, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Hui Yan
- Key Laboratory of Advanced Functional Materials, Institute of Advanced Energy Materials and Devices, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Xuemei Song
- Key Laboratory of Advanced Functional Materials, Institute of Advanced Energy Materials and Devices, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
4
|
Maryam Zounia, Mohsen Hakimi, Mohamad Reza Samadzadeh Yazdi, Hakimeh Zare. Preparation and characterization of a high-performance nanomagnetic GO/Fe3O4/Cys adsorbent for silver extraction. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
5
|
Graphene oxide incorporated chitosan/acrylamide/itaconic acid semi-interpenetrating network hydrogel bio-adsorbents for highly efficient and selective removal of cationic dyes. Int J Biol Macromol 2022; 219:273-289. [PMID: 35932804 DOI: 10.1016/j.ijbiomac.2022.07.238] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/19/2022] [Accepted: 07/30/2022] [Indexed: 11/22/2022]
Abstract
In recent years, polymeric bio-adsorbents offers high removal efficiency, superior adsorption capacity and selectivity against various pollutants in aqueous medium. While designing these adsorbents, their environmental friendliness, sustainability, renewability, easy accessibility, and cost-effectiveness should be considered. In this study, GO incorporated semi-interpenetrating network (semi-IPN) nanocomposite hydrogels (CS/AAm/IA/GO) were obtained by free radical copolymerization of acrylamide (AAm) and itaconic acid (IA) in the presence of chitosan (CS) as an environmentally friendly bio-adsorbent. GO significantly improved the thermal stability, compressive strength, and percentage swelling of the hydrogel. The selective adsorption studies demonstrated that methylene blue (MB) was the most efficiently removed dye from both individual and mixed dye systems with 99.8 % removal efficiency. The adsorption capacity was found to be 247.47 mg g-1 using 0.025 g hydrogel adsorbent containing 0.5 wt% of GO and an initial MB concentration of 5 mg L-1 at pH 8 over 90 min at room temperature. The kinetic and isotherm studies revealed that the adsorption process followed the pseudo-second-order kinetic model and Langmuir adsorption isotherm. Thermodynamic studies suggested the spontaneous and endothermic nature of MB adsorption. Also, the MB removal efficiency above 96 % was obtained after 7 consecutive adsorption-desorption cycles while maintaining the structural stability of the bio-adsorbent.
Collapse
|
6
|
Le TTH, Ngo TT, Nguyen THH, Pham TD, Vu TXH, Tran QV. Green Nanoarchitectonics Using Cleistocalyx Operculatus Leaf Extract in the Preparation of Multifunctional Graphene Oxide/Fe3O4/Ag Nanomaterials for Water Decontamination and Disinfection. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-021-02164-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Rezazadeh N, Danesh S, Eftekhari M. TX-100 adsorption from aqueous solution using modified graphene oxide; optimization by response surface methodology and one factor at a time techniques. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1979409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Najmeh Rezazadeh
- Department of Civil Engineering, Faculty of Engineering, Ferdowsi University, Mashhad, Iran
| | - Shahnaz Danesh
- Department of Civil Engineering, Faculty of Engineering, Ferdowsi University, Mashhad, Iran
| | - Mohammad Eftekhari
- Department of Chemistry, Faculty of Sciences, University of Neyshabur, Neyshabur, Iran
| |
Collapse
|
8
|
Al-Kinani A, Gheibi M, Eftekhari M. Graphene oxide–tannic acid nanocomposite as an efficient adsorbent for the removal of malachite green from water samples. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s40808-019-00612-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|