1
|
Na'es M, Lühl L, Kanngießer B. A new conservation material for gold in heritage wall paintings: polymer-stabilized nanogold gels (NGGs). NANOSCALE ADVANCES 2024:d4na00877d. [PMID: 39723235 PMCID: PMC11667577 DOI: 10.1039/d4na00877d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024]
Abstract
Gilded wall paintings such as those in Petra-Jordan undergo deterioration processes such as delamination and loss of the gold layer. The aim of this work is to produce a functioning long-lasting adhesive that compensates for binder and gold loss while stabilising the gold layer. Polymer-stabilised gold nanoparticles (AuNPs) as a conservation material for gilded heritage paintings (Nano Gold Gel (NGG)) were synthesised using two facile and affordable synthesis approaches. AuNPs enhance the stability of the adhesive polymer over time and introduce mass conservation to the gold layer. Two natural polymers and one synthetic polymer, frequently used in conservation as adhesives, were used as reducing agents and stabilisers for the nanoparticles. The chemical alteration of the polymers and the Au-polymer interaction at the molecular level were investigated with FTIR spectroscopy, while the chemical environment of gold was investigated with X-ray absorption spectroscopy (XANES/EXAFS). The synthesized NGG was applied on the replica samples to reattach the gold layer to its support. Characterisation results indicate that the formation of AuNPs stabilised by the three polymers did not alter the chemical structure of the polymers. The applied NGG successfully achieved re-adhesion and exhibited appropriate optical and chemical properties for use as a conservation material.
Collapse
Affiliation(s)
- Maram Na'es
- Institute for Optics and Atomic Physics, Technical University Berlin Hardenbergstr. 36 10623 Berlin Germany
| | - Lars Lühl
- Institute for Optics and Atomic Physics, Technical University Berlin Hardenbergstr. 36 10623 Berlin Germany
| | - Birgit Kanngießer
- Institute for Optics and Atomic Physics, Technical University Berlin Hardenbergstr. 36 10623 Berlin Germany
| |
Collapse
|
2
|
Tian X, Zhang K, Zhang Y, Wang N, Wang H, Xu H, Guang S. Preparation and mechanism study of hydrogen bond induced enhanced composited gelatin microsphere probe. Int J Biol Macromol 2024; 266:130752. [PMID: 38467229 DOI: 10.1016/j.ijbiomac.2024.130752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/25/2024] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
Fluorescent probes offer rapid and efficient detection of metal ions. However, their properties, including high biotoxicity and low detection limits, often limit their utility in biological systems. In this study, we used a microfluidic approach to fabricate photocrosslinked gelatin microspheres with a micropore, providing a straightforward method for loading fluorescent probes into these microspheres based on the adsorption effect and hydrogen bonding interaction. The gelatin microsphere loaded probes, GelMA/TPA-DAP and GelMA/TPA-ISO-HNO were designed and obtained. The results show that these probes exhibit obviously low biotoxicity compared to the original molecular probes TPA-DAP and TPA-ISO-HNO. Simultaneously, it is found that GelMA/TPA-DAP and GelMA/TPA-ISO-HNO have better detection sensitivity, the detection limits are 35.4 nM for Cu2+, 16.5 nM for Co2+ and 20.5 nM for Ni2+ for GelMA/TPA-DAP probe. Compared to the original TPA-DAP they are improved by 37.2 %, 26.3 % and 22.6 % respectively. The corresponding coordination constants were 10.8 × 105, 4.11×105 and 6.04×105, which is larger than homologous TPA-DAP. Similar results were also verified in the GelMA/TPA-ISO-HNO probe. The mechanism was investigated in detail by theoretical simulations and advanced spectral analysis. The density functional theory (DFT) simulations show that the probes are anchored inside the microspheres and the molecular structure is modified due to the hydrogen bonding interaction between the microsphere and the molecular probe, which makes GelMA/TPA-DAP exhibit stronger coordination capacity with metal ions than homologous TPA-DAP. In addition, the adsorption effect also provided some synergistic enhancement contribution. Meanwhile, cellular experiments have also shown that the composite microspheres can improve the biocompatibility of the probe and will provide a wider range of applications towards bioassay. This simple and effective method will provide a convenient way to improve the performance of fluorescent probes and their biological applications.
Collapse
Affiliation(s)
- Xiaoyong Tian
- State Key Laboratory for Modification of Chemical Fibers and Polymers Materials, College of Materials Sciences and Engineering, Donghua University, Shanghai 201620, China
| | - Kezhen Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymers Materials, College of Materials Sciences and Engineering, Donghua University, Shanghai 201620, China
| | - Yu Zhang
- College of Chemistry, and Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Nan Wang
- College of Chemistry, and Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Huaping Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymers Materials, College of Materials Sciences and Engineering, Donghua University, Shanghai 201620, China.
| | - Hongyao Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymers Materials, College of Materials Sciences and Engineering, Donghua University, Shanghai 201620, China.
| | - Shanyi Guang
- College of Chemistry, and Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| |
Collapse
|
3
|
Zhang Y, Li P, Su R, Wen F, Jia Z, Lv Y, Cai J, Su W. Curcumin-loaded multifunctional chitosan gold nanoparticles: An enhanced PDT/PTT dual-modal phototherapeutic and pH-responsive antimicrobial agent. Photodiagnosis Photodyn Ther 2022; 39:103011. [PMID: 35820632 DOI: 10.1016/j.pdpdt.2022.103011] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/21/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022]
Abstract
Overuse of antibiotics has led to the emergence of multidrug resistant (MDR) bacteria.. Photothermal (PTT) and photodynamic therapy (PDT) have may be effective alternatives for antibiotics in the treatment of bacterial infections. In this study, based on chitosan (CS)-coated gold nanoparticles, a pH stimulus-responsive drug delivery system was developed, which can anchor to the cell membrane for photodynamic therapy and photothermal therapy, and enhance the therapeutic potential of curcumin (Cur). Release experiments showed that AuNPs/CS-Cur nanocomposites released curcumin in a pH-dependent manner, which may facilitate the drug to be delivered to the acidic bacterial infection environment. CS as the outer layer covered on gold nanoparticles could improve the dispersibility of Cur in aqueous solution, gold nanoparticles prevent rapid photobleaching of curcumin, thus ensuring the yield of singlet oxygen under irradiation, and enhance the electrostatic binding with bacteria cell membrane. Under light conditions, AuNPs/CS-Cur can produce a large amount of reactive oxygen species and heat to kill S. aureus and E. coli. Compared with free Cur-mediated PDT, the complex significantly improved the synergistic PTT/PDT photoinactivation ability against S. aureus and E. coli. In addition, AuNPs/CS-Cur had good biocompatibility. Therefore, AuNPs/CS-Cur possessed the characteristics of electrostatic targeting, photodynamic and photothermal antibacterial therapy, which would become an efficient and safe antibacterial nano-platform and provide new ideas for the treatment of bacterial infection.
Collapse
Affiliation(s)
- Ying Zhang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Peiyuan Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China.
| | - Rixiang Su
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Fangzhou Wen
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Zhiruo Jia
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China.
| | - Yingbin Lv
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Jinyun Cai
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Wei Su
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China.
| |
Collapse
|
4
|
DFT and Molecular Simulation Study of Gold Clusters as Effective Drug Delivery Systems for 5-Fluorouracil Anticancer Drug. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02329-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
5
|
Mallakpour S, Azadi E, Hussain CM. Recent advancements in synthesis and drug delivery utilization of polysaccharides-based nanocomposites: The important role of nanoparticles and layered double hydroxides. Int J Biol Macromol 2021; 193:183-204. [PMID: 34695491 DOI: 10.1016/j.ijbiomac.2021.10.123] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/15/2021] [Accepted: 10/17/2021] [Indexed: 12/12/2022]
Abstract
Drug delivery systems are explained as methods to deliver a specific drug to desired organs, tissues, and cells for drug release to diseases treatment. Recently, considerable development has been interested in stimuli-responsive nano-systems, which respond to the essential pathological and physicochemical issues in diseased sites. During the last decades, researchers in the world presented, investigated, and implemented novel different nanomaterials with a focus on developing drug delivery. Polysaccharides including chitosan, alginate, hyaluronic acid, gums, and cellulose, as natural bio-materials, are suitable candidates for designing and formulations of these nano-systems because of the outstanding merits such as bio-compatibility, bio-degradability, non-toxicity, and gelling characteristics. On the other side, nanoparticles including metals (Au, Ag), metal oxides (Fe3O4, ZnO, CuO), or non-metal oxides (SiO2) and also, layered double hydroxides nanostructures have appealed significant consideration in the fields of biomedical therapeutics and cancer therapy owing to the bio-compatibility, great surface area, good chemical and mechanical features, and also proper magnetic characteristics. This comprehensive review provides an overview of current advancements in drug delivery strategies, and manufacturing methods using chitosan, alginate, hyaluronic acid, gums, and also, metals, metal oxides, non-metal oxides, and LDHs for delivery system uses.
Collapse
Affiliation(s)
- Shadpour Mallakpour
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran.
| | - Elham Azadi
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
6
|
Si NT, Nhung NTA, Bui TQ, Nguyen MT, Nhat PV. Gold nanoclusters as prospective carriers and detectors of pramipexole. RSC Adv 2021; 11:16619-16632. [PMID: 35479146 PMCID: PMC9031969 DOI: 10.1039/d1ra02172a] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
Pramipexole (PPX) is known in the treatment of Parkinson's disease and restless legs syndrome. We carried out a theoretical investigation on pramipexole-Au cluster interactions for the applications of drug delivery and detection. Three Au N clusters with sizes N = 6, 8 and 20 were used as reactant models to simulate the metallic nanostructured surfaces. Quantum chemical computations were performed in both gas phase and aqueous environments using density functional theory (DFT) with the PBE functional and the cc-pVDZ-PP/cc-pVTZ basis set. The PPX drug is mainly adsorbed on gold clusters via its nitrogen atom of the thiazole ring with binding energies of ca. -22 to -28 kcal mol-1 in vacuum and ca. -18 to -24 kcal mol-1 in aqueous solution. In addition to such Au-N covalent bonding, the metal-drug interactions are further stabilized by electrostatic effects, namely hydrogen-bond NH⋯Au contributions. Surface-enhanced Raman scattering (SERS) of PPX adsorbed on the Au surfaces and its desorption process were also examined. In comparison to Au8, both Au6 and Au20 clusters undergo a shorter recovery time and a larger change of energy gap, being possibly conducive to electrical conversion, thus signaling for detection of the drug. A chemical enhancement mechanism for SERS procedure was again established in view of the formation of nonconventional hydrogen interactions Au⋯H-N. The binding of PPX to a gold cluster is expected to be reversible and triggered by the presence of cysteine residues in protein matrices or lower-shifted alteration of environment pH. These findings would encourage either further theoretical probes to reach more accurate views on the efficiency of pramipexole-Au interactions, or experimental attempts to build appropriate gold nanostructures for practical trials, harnessing their potentiality for applications.
Collapse
Affiliation(s)
- Nguyen Thanh Si
- Computational Chemistry Research Group, Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University Ho Chi Minh City Vietnam
| | | | - Thanh Q Bui
- Department of Chemistry, University of Sciences, Hue University Hue Vietnam
| | - Minh Tho Nguyen
- Institute for Computational Science and Technology (ICST) Ho Chi Minh City Vietnam
| | - Pham Vu Nhat
- Department of Chemistry, Can Tho University Can Tho Vietnam
| |
Collapse
|
7
|
Liu B, Yang W, Che C, Liu J, Si M, Gong Z, Gao R, Yang G. A Targeted Nano Drug Delivery System of AS1411 Functionalized Graphene Oxide Based Composites. ChemistryOpen 2021; 10:408-413. [PMID: 33605540 PMCID: PMC8015732 DOI: 10.1002/open.202000226] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/09/2021] [Indexed: 12/12/2022] Open
Abstract
A novel method for the preparation of antitumor drug vehicles has been optimized. Biological materials of chitosan oligosaccharide (CO) and γ-polyglutamic acid (γ-PGA) have previously been employed as modifiers to covalently modify graphene oxide (GO), which in turn loaded doxorubicin (DOX) to obtain a nano drug delivery systems of graphene oxide based composites (GO-CO-γ-PGA-DOX). The system was not equipped with the ability of initiative targeting, thus resulting into toxicity and side effects on normal tissues or organs. In order to further improve the targeting property of the system, the nucleic acid aptamer NH2 -AS1411 (APT) of targeted nucleolin (C23) was used to conjugate on GO-CO-γ-PGA to yield the targeted nano drug delivery system APT-GO-CO-γ-PGA. The structure, composition, dispersion, particle size and morphology properties of the synthesized complex have been studied using multiple characterization methods. Drug loading and release profile data showed that APT-GO-CO-γ-PGA is provided with high drug loading capacity and is capable of controlled and sustained release of DOX. Cell experimental results indicated that since C23 was overexpressed on the surface of Hela cells but not on the surface of Beas-2B cells, APT-GO-CO-γ-PGA-DOX can target Hela cells and make increase toxicity to Hela cells than Beas-2B cells, and the IC50 value of APT-GO-CO-γ-PGA-DOX was 3.23±0.04 μg/mL. All results proved that APT-GO-CO-γ-PGA can deliver antitumor drugs in a targeted manner, and achieve the effect of reducing poison, which indicated that the targeted carrier exhibits a broad application prospect in the field of biomedicine.
Collapse
Affiliation(s)
- Baoqing Liu
- Qufu Normal UniversityCollege of Life Sciences57 Jingxuan West Road, Qufu CityShandongChina
| | - Wenzhi Yang
- Institution School of Food Science and NutritionUniversity of LeedsWoodhouse LnLeedsLS2 9JTUK
| | - Chengchuan Che
- Qufu Normal UniversityCollege of Life Sciences57 Jingxuan West Road, Qufu CityShandongChina
| | - Jinfeng Liu
- Qufu Normal UniversityCollege of Life Sciences57 Jingxuan West Road, Qufu CityShandongChina
| | - Meiru Si
- Qufu Normal UniversityCollege of Life Sciences57 Jingxuan West Road, Qufu CityShandongChina
| | - Zhijin Gong
- Qufu Normal UniversityCollege of Life Sciences57 Jingxuan West Road, Qufu CityShandongChina
| | - Ruixia Gao
- Qufu Normal UniversityCollege of Life Sciences57 Jingxuan West Road, Qufu CityShandongChina
| | - Ge Yang
- Qufu Normal UniversityCollege of Life Sciences57 Jingxuan West Road, Qufu CityShandongChina
| |
Collapse
|
8
|
Are nickel- and titanium- doped fullerenes suitable adsorbents for dopamine in an aqueous solution? Detailed DFT and AIM studies. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114942] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Rahman H, Hossain MR, Ferdous T. The recent advancement of low-dimensional nanostructured materials for drug delivery and drug sensing application: A brief review. J Mol Liq 2020; 320:114427. [PMID: 33012931 PMCID: PMC7525470 DOI: 10.1016/j.molliq.2020.114427] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/17/2020] [Accepted: 09/23/2020] [Indexed: 01/07/2023]
Abstract
In this review article, we have presented a detailed analysis of the recent advancement of quantum mechanical calculations in the applications of the low-dimensional nanomaterials (LDNs) into biomedical fields like biosensors and drug delivery systems development. Biosensors play an essential role for many communities, e.g. law enforcing agencies to sense illicit drugs, medical communities to remove overdosed medications from the human and animal body etc. Besides, drug delivery systems are theoretically being proposed for many years and experimentally found to deliver the drug to the targeted sites by reducing the harmful side effects significantly. In current COVID-19 pandemic, biosensors can play significant roles, e.g. to remove experimental drugs during the human trials if they show any unwanted adverse effect etc. where the drug delivery systems can be potentially applied to reduce the side effects. But before proceeding to these noble and expensive translational research works, advanced theoretical calculations can provide the possible outcomes with considerable accuracy. Hence in this review article, we have analyzed how theoretical calculations can be used to investigate LDNs as potential biosensor devices or drug delivery systems. We have also made a very brief discussion on the properties of biosensors or drug delivery systems which should be investigated for the biomedical applications and how to calculate them theoretically. Finally, we have made a detailed analysis of a large number of recently published research works where theoretical calculations were used to propose different LDNs for bio-sensing and drug delivery applications.
Collapse
Affiliation(s)
- Hamidur Rahman
- Department of Physics, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Md Rakib Hossain
- Department of Physics, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Tahmina Ferdous
- Department of Physics, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| |
Collapse
|
10
|
Synthesis and application of chitosan/tripolyphosphate/graphene oxide hydrogel as a new drug delivery system for Sumatriptan Succinate. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113835] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Khodashenas B, Ardjmand M, Baei MS, Rad AS, Akbarzadeh A. Conjugation of pectin biopolymer with Au‐nanoparticles as a drug delivery system: Experimental and DFT studies. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5609] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Bahareh Khodashenas
- Department of Chemical Engineering, South Tehran BranchIslamic Azad University Tehran Iran
| | - Mehdi Ardjmand
- Department of Chemical Engineering, South Tehran BranchIslamic Azad University Tehran Iran
| | | | - Ali Shokuhi Rad
- Department of Chemical Engineering, Qaemshahr BranchIslamic Azad University Qaemshahr Iran
| | - Azim Akbarzadeh
- Pilot Nanobiotechnology DepPasteur Institute of Iran Tehran Iran
| |
Collapse
|
12
|
Aali E, Shokuhi Rad A, Esfahanian M. Computational investigation of the strategy of DNA/RNA stabilization through the study of the conjugation of an oligonucleotide with silver and gold nanoparticles. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5690] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Elahe Aali
- Department of Chemical Engineering, Qaemshahr Branch Islamic Azad University Qaemshahr Iran
| | - Ali Shokuhi Rad
- Department of Chemical Engineering, Qaemshahr Branch Islamic Azad University Qaemshahr Iran
| | - Mehri Esfahanian
- Department of Chemical Engineering, Qaemshahr Branch Islamic Azad University Qaemshahr Iran
| |
Collapse
|
13
|
Muniz-Miranda M, Muniz-Miranda F, Giorgetti E. Spectroscopic and Microscopic Analyses of Fe 3O 4/Au Nanoparticles Obtained by Laser Ablation in Water. NANOMATERIALS 2020; 10:nano10010132. [PMID: 31936852 PMCID: PMC7023500 DOI: 10.3390/nano10010132] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/20/2022]
Abstract
Magneto-plasmonic nanoparticles constituted of gold and iron oxide were obtained in an aqueous environment by laser ablation of iron and gold targets in two successive steps. Gold nanoparticles are embedded in a mucilaginous matrix of iron oxide, which was identified as magnetite by both microscopic and spectroscopic analyses. The plasmonic properties of the obtained colloids, as well as their adsorption capability, were tested by surface-enhanced Raman scattering (SERS) spectroscopy using 2,2′-bipyridine as a probe molecule. DFT calculations allowed for obtaining information on the adsorption of the ligand molecules that strongly interact with positively charged surface active sites of the gold nanoparticles, thus providing efficient SERS enhancement. The presence of iron oxide gives the bimetallic colloid new possibilities of adsorption in addition to those inherent to gold nanoparticles, especially regarding organic pollutants and heavy metals, allowing to remove them from the aqueous environment by applying a magnetic field. Moreover, these nanoparticles, thanks to their low toxicity, are potentially useful not only in the field of sensors, but also for biomedical applications.
Collapse
Affiliation(s)
- Maurizio Muniz-Miranda
- Department of Chemistry “Ugo Schiff”, University of Florence, Via Lastruccia 3, 50019 Sesto Fiorentino, Italy
- Institute of Complex Systems (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy;
- Correspondence:
| | - Francesco Muniz-Miranda
- École Nationale Supérieure de Chimie de Paris and PSL Research University, CNRS, Institute of Chemistry for Life and Health Sciences (i-CLeHS), FRE 2027, 11, rue Pierre et Marie Curie, F-75005 Paris, France;
| | - Emilia Giorgetti
- Institute of Complex Systems (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy;
| |
Collapse
|
14
|
Khodashenas B, Ardjmand M, Sharifzadeh Baei M, Shokuhi Rad A, Akbarzadeh Khiyavi A. Bovine serum albumin/gold nanoparticles as a drug delivery system for Curcumin: experimental and computational studies. J Biomol Struct Dyn 2019; 38:4644-4654. [DOI: 10.1080/07391102.2019.1683073] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Bahareh Khodashenas
- Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mehdi Ardjmand
- Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mazyar Sharifzadeh Baei
- Department of Chemical Engineering, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Ali Shokuhi Rad
- Department of Chemical Engineering, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
| | | |
Collapse
|