1
|
Zhang T, Yu Y, Han S, Cong H, Kang C, Shen Y, Yu B. Preparation and application of UPLC silica microsphere stationary phase:A review. Adv Colloid Interface Sci 2024; 323:103070. [PMID: 38128378 DOI: 10.1016/j.cis.2023.103070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
In this review, microspheres for ultra-performance liquid chromatography (UPLC) were reviewed in accordance with the literature in recent years. As people's demands for chromatography are becoming more and more sophisticated, the preparation and application of UPLC stationary phases have become the focus of researchers in this field. This new analytical separation science not only maintains the practicality and principle of high-performance liquid chromatography (HPLC), but also improves the step function of chromatographic performance. The review presents the morphology of four types of sub-2 μm silica microspheres that have been used in UPLC, including non-porous silica microspheres (NPSMs), mesoporous silica microspheres (MPSMs), hollow silica microspheres (HSMs) and core-shell silica microspheres (CSSMs). The preparation, pore control and modification methods of different microspheres are introduced in the review, and then the applications of UPLC in drug analysis and separation, environmental monitoring, and separation of macromolecular proteins was presented. Finally, a brief overview of the existing challenges in the preparation of sub-2 μm microspheres, which required further research and development, was given.
Collapse
Affiliation(s)
- Tingyu Zhang
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Yaru Yu
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Shuiquan Han
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China; Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Chuankui Kang
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
2
|
Icin O, Semerci T, Soraru GD, Vakifahmetoglu C. Design and Performance Comparison of Polymer-Derived Ceramic Ambigels and Aerogels. ACS OMEGA 2023; 8:32955-32962. [PMID: 37720786 PMCID: PMC10500666 DOI: 10.1021/acsomega.3c04607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023]
Abstract
This work reports the synthesis and characterization of preceramic- and polymer-derived SiOC aerogels obtained from a commercial siloxane resin. The preceramic aerogels were obtained by ambient pressure drying (ambigels) and CO2 supercritical drying. Despite different drying processes, the final ceramic ambi/aerogels have very similar microstructural features in density, porosity, pore size, and specific surface area. Both materials have shown promising results for oil sorption and water cleaning. Supercritically dried-SiOC aerogel had low thermal conductivity with 0.046 W·m-1·K-1 at RT and 0.073 W·m-1·K-1 at 500 °C. These results suggest that substituting the rather complicated and expensive CO2-SC drying with the more friendly and cheap ambient pressure drying can be done without having to accept significant microstructural/property degradation.
Collapse
Affiliation(s)
- Oyku Icin
- Department
of Materials Science and Engineering, İzmir
Institute of Technology, 35430 İzmir, Turkey
| | - Tugce Semerci
- Department
of Materials Science and Engineering, İzmir
Institute of Technology, 35430 İzmir, Turkey
| | - Gian Domenico Soraru
- Department
of Industrial Engineering, University of
Trento, Via Sommarive
9, 38123 Trento, Italy
| | - Cekdar Vakifahmetoglu
- Department
of Materials Science and Engineering, İzmir
Institute of Technology, 35430 İzmir, Turkey
| |
Collapse
|
3
|
Fabrication and Properties of Hydrophobically Modified ZnO–SiO2 Nanocomposite with Polysiloxane. J Inorg Organomet Polym Mater 2023. [DOI: 10.1007/s10904-023-02571-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
4
|
Mizerska U, Rubinsztajn S, Chojnowski J, Cypryk M, Uznanski P, Walkiewicz-Pietrzykowska A, Fortuniak W. Self-Restructuring of Polyhydromethylsiloxanes by the Hydride Transfer Process: A New Approach to the Cross-Linking of Polysiloxanes and to the Fabrication of Thin Polysiloxane Coatings. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6981. [PMID: 36234320 PMCID: PMC9570814 DOI: 10.3390/ma15196981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The branching and cross-linking of siloxane polymers are important processes in silicone technology. A new type of such a process has been developed, which is a self-restructuring of linear polyhydromethylsiloxane (PHMS). This process involves the reorganization of the PHMS to form a highly branched siloxane polymer or finally a cross-linked siloxane network. It occurs through the transfer of a hydride ion between silicon atoms catalyzed by tris(pentafluoromethyl)borane. Its advantage over existing branching and cross-linking reactions is that it runs at room temperature without a low-molecular-weight cross-linker in the absence of water, silanol groups, or other protic compounds and it does not use metal catalysts. The study of this process was carried out in toluene solution. Its course was followed by 1H NMR, 29Si NMR and FTIR, SEC, and gas chromatography. A general mechanism of this new self-restructuring process supported by quantum calculations is proposed. It has been shown that a linear PHMS self-restructured to a highly branched polymer can serve as a pure methylsiloxane film precursor.
Collapse
|
5
|
Mituła K, Januszewski R, Duszczak J, Rzonsowska M, Dudziec B. High thermally stable polysiloxanes cross-linked with di(alkenyl)functionalized DDSQs exhibiting swelling abilities. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Mizerska U, Fortuniak W, Chojnowski J, Rubinsztajn S, Zakrzewska J, Bak-Sypien I, Nyczyk-Malinowska A. Porous SiC and SiC/C f Ceramic Microspheres Derived from Polyhydromethylsiloxane by Carbothermal Reduction. MATERIALS (BASEL, SWITZERLAND) 2021; 15:81. [PMID: 35009245 PMCID: PMC8745781 DOI: 10.3390/ma15010081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/03/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
A simple and inexpensive method for the preparation of porous SiC microspheres is presented. Polysiloxane microspheres derived from polyhydromethylsiloxane (PHMS) cross-linked with divinylbenzene (DVB) were ceramized under conditions leading to the removal of oxygen from the material. The content of free carbon (Cf) in highly crystalline silicon carbide (SiC) particles can be controlled by using various proportions of DVB in the synthesis of the pre-ceramic material. The chemical structure of the ceramic microspheres was studied by elemental analysis for carbon and oxygen, 29Si MAS NMR, 13C MAS NMR, SEM/EDS, XRD and Raman spectroscopies, and their morphology by SEM, nitrogen adsorption and mercury intrusion porosimetries. The gaseous products of the thermal reduction processes formed during ceramization created a porous structure of the microspheres. In the SiC/Cf microspheres, meso/micro pores were formed, while in carbon-free SiC, microspheres macroporosity dominated.
Collapse
Affiliation(s)
- Urszula Mizerska
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, ul. Sienkiewicza 112, 90-363 Lodz, Poland; (W.F.); (J.C.); (S.R.); (J.Z.); (I.B.-S.)
| | - Witold Fortuniak
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, ul. Sienkiewicza 112, 90-363 Lodz, Poland; (W.F.); (J.C.); (S.R.); (J.Z.); (I.B.-S.)
| | - Julian Chojnowski
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, ul. Sienkiewicza 112, 90-363 Lodz, Poland; (W.F.); (J.C.); (S.R.); (J.Z.); (I.B.-S.)
| | - Slawomir Rubinsztajn
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, ul. Sienkiewicza 112, 90-363 Lodz, Poland; (W.F.); (J.C.); (S.R.); (J.Z.); (I.B.-S.)
| | - Joanna Zakrzewska
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, ul. Sienkiewicza 112, 90-363 Lodz, Poland; (W.F.); (J.C.); (S.R.); (J.Z.); (I.B.-S.)
| | - Irena Bak-Sypien
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, ul. Sienkiewicza 112, 90-363 Lodz, Poland; (W.F.); (J.C.); (S.R.); (J.Z.); (I.B.-S.)
| | - Anna Nyczyk-Malinowska
- Faculty of Materials Science and Ceramics, AGH-University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland;
| |
Collapse
|
7
|
Aleeva Y, Ferrara V, Bonasera A, Martino DC, Pignataro B. Superhydrophobic TiO2/fluorinated polysiloxane hybrid coatings with controlled morphology for solar photocatalysis. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Mizerska U, Fortuniak W, Rubinsztajn S, Chojnowski J. Impact of cross‐linker on the structure and hydrophilic–hydrophobic properties of polyhydromethylsiloxane‐derived microspheres. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Urszula Mizerska
- Centre of Molecular and Macromolecular Studies of Polish Academy of Sciences Łódź Poland
| | - Witold Fortuniak
- Centre of Molecular and Macromolecular Studies of Polish Academy of Sciences Łódź Poland
| | - Slawomir Rubinsztajn
- Centre of Molecular and Macromolecular Studies of Polish Academy of Sciences Łódź Poland
| | - Julian Chojnowski
- Centre of Molecular and Macromolecular Studies of Polish Academy of Sciences Łódź Poland
| |
Collapse
|
9
|
Li Y, Guo L, Ye J, He L, Qiu T, Li X. The crosslinking directing dynamic behavior of polymer latex under the investigation toward waterborne damping coatings. J Appl Polym Sci 2021. [DOI: 10.1002/app.49676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yue Li
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing Chaoyang China
- Key Laboratory of Carbon Fiber and Functional Polymers Ministry of Education, Beijing University of Chemical Technology Beijing Chaoyang China
| | - Longhai Guo
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing Chaoyang China
- Key Laboratory of Carbon Fiber and Functional Polymers Ministry of Education, Beijing University of Chemical Technology Beijing Chaoyang China
| | - Jun Ye
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing Chaoyang China
- Key Laboratory of Carbon Fiber and Functional Polymers Ministry of Education, Beijing University of Chemical Technology Beijing Chaoyang China
| | - Lifan He
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing Chaoyang China
- Key Laboratory of Carbon Fiber and Functional Polymers Ministry of Education, Beijing University of Chemical Technology Beijing Chaoyang China
| | - Teng Qiu
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing Chaoyang China
- Key Laboratory of Carbon Fiber and Functional Polymers Ministry of Education, Beijing University of Chemical Technology Beijing Chaoyang China
| | - Xiaoyu Li
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing Chaoyang China
- Key Laboratory of Carbon Fiber and Functional Polymers Ministry of Education, Beijing University of Chemical Technology Beijing Chaoyang China
| |
Collapse
|
10
|
Mituła K, Duszczak J, Rzonsowska M, Żak P, Dudziec B. Polysiloxanes Grafted with Mono(alkenyl)Silsesquioxanes-Particular Concept for Their Connection. MATERIALS 2020; 13:ma13214784. [PMID: 33114766 PMCID: PMC7662624 DOI: 10.3390/ma13214784] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 11/20/2022]
Abstract
Herein, a facile and efficient synthetic route to unique hybrid materials containing polysiloxanes and mono(alkyl)silsesquioxanes as their pendant modifiers (T8@PS) was demonstrated. The idea of this work was to apply the hydrosilylation reaction as a tool for the efficient and selective attachment of mono(alkenyl)substituted silsesquioxanes (differing in the alkenyl chain length, from -vinyl to -dec-9-enyl and types of inert groups iBu, Ph at the inorganic core) onto two polysiloxanes containing various amount of Si-H units. The synthetic protocol, determined and confirmed by FT-IR in situ and NMR analyses, was optimized to ensure complete Si-H consumption along with the avoidance of side-products. A series of 20 new compounds with high yields and complete β-addition selectivity was obtained and characterized by spectroscopic methods.
Collapse
Affiliation(s)
- Katarzyna Mituła
- Faculty of Chemistry, Department of Organometallic Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland; (J.D.); (M.R.); (P.Ż.)
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
- Correspondence: (K.M.); (B.D.); Tel.: +48-61-829-1878 (B.D.)
| | - Julia Duszczak
- Faculty of Chemistry, Department of Organometallic Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland; (J.D.); (M.R.); (P.Ż.)
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
| | - Monika Rzonsowska
- Faculty of Chemistry, Department of Organometallic Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland; (J.D.); (M.R.); (P.Ż.)
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
| | - Patrycja Żak
- Faculty of Chemistry, Department of Organometallic Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland; (J.D.); (M.R.); (P.Ż.)
| | - Beata Dudziec
- Faculty of Chemistry, Department of Organometallic Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland; (J.D.); (M.R.); (P.Ż.)
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
- Correspondence: (K.M.); (B.D.); Tel.: +48-61-829-1878 (B.D.)
| |
Collapse
|
11
|
Polysiloxane Derived Macroporous Silicon Oxycarbide Microspheroidal Particles and Their Decoration with 1D Structures. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01513-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
AbstractA simple method of synthesis for the macroporous SiOC spheroidal microparticles was developed. Preceramic polysiloxane macroporous microbeads were obtained by a one-step aqueous emulsion process involving poly(hydromethylsiloxane) (PHMS) with the addition of FeCl3·6H2O. Thermal treatment of these particles gave various SiOC materials depending on the pyrolysis temperature. Hierarchically porous spheroidal mezo-macroporous ceramers were obtained at 600 °C. Heating at 850–1000 °C gave SiOC ceramic spheroidal particles with about 60% open porosity. Ceramization at 1200–1400 °C led to the particles decorated with ceramic whiskers and wires. Heating at 1600 °C gave wires and spilled ceramic particles. These 1D ceramic structures were formed by a Vapor–Liquid–Solid (VLS) mechanism.
Collapse
|