1
|
Pakan M, Mirabi M, Valipour A. Effectiveness of different CuO morphologies nanomaterials on the permeability, antifouling, and mechanical properties of PVDF/PVP/CuO ultrafiltration membrane for water treatment. CHEMOSPHERE 2023; 337:139333. [PMID: 37379983 DOI: 10.1016/j.chemosphere.2023.139333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/19/2023] [Accepted: 06/23/2023] [Indexed: 06/30/2023]
Abstract
The hydrophobic nature of Poly (vinylidene fluoride) (PVDF) is a significant barrier to use in ultrafiltration, resulting in fouling, flux decline, and reduced lifespan in water treatment. This study examines the effectiveness of different morphologies of CuO nanomaterials (NMs) (spherical, rod, plate, and flower), synthesized by the facile hydrothermal method, to modify PVDF membrane with PVP additive for improving the performance of water permeability and antifouling. Such membrane configurations with different morphologies of CuO NMs improved hydrophilicity with a maximum water flux of 222-263 L m-2h-1 compared to 195 L m-2h-1 for the bare membrane and exhibited excellent thermal and mechanical strengths. The characterization results exhibited that plate-like CuO NMs were dispersed uniformly in the membrane matrix, and their incorporation as a composite improved the membrane properties. From the antifouling test with the bovine serum albumin (BSA) solution, the membrane with plate-like CuO NMs had the highest flux recovery ratio (FRR) (∼91%) and the lowest irreversible fouling ratio (∼10%). The antifouling enhancement was due to less interaction between modified membranes and foulant. Further, the nanocomposite membrane showed excellent stability and negligible Cu2+ ion leaching. Overall, our findings provide a new strategy for developing inorganic nanocomposite PVDF membranes for water treatment.
Collapse
Affiliation(s)
- Mahyar Pakan
- Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti University, Tehran, Iran
| | - Maryam Mirabi
- Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti University, Tehran, Iran.
| | - Alireza Valipour
- Water and Wastewater Research Center (WWRC), Water Research Institute (WRI), Bahar Blvd., Tehran, Iran.
| |
Collapse
|
2
|
Lin Z, Zhang D, Liu Y, Zhang Z, Zhao Z, Shao B, Wu R, Fang R, Yao J. CO 2/CH 4 separation performance of SiO 2/PES composite membrane prepared by gas phase hydrolysis and grafting coating in gas-liquid membrane contactor: A comparative study. Heliyon 2023; 9:e18760. [PMID: 37560639 PMCID: PMC10407752 DOI: 10.1016/j.heliyon.2023.e18760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/11/2023] Open
Abstract
The gas-liquid membrane contactor (GLMC) is a new and promising kind of gas separation technique, but still exhibits limitations, especially in membrane performance. In order to solve the above problems, we fabricated and characterized novel OH/SiO2/PES composite membranes using gas phase hydrolysis and graft coating methods, respectively. In the preparation process, whether to use alkali to pretreat the membrane was used as an evaluation index. The CO2/CH4 separation performance was tested using the modified OH/SiO2/PES hollow fiber membrane as the membrane contactor in GLMC. In the experiment, we conducted a single factor experiment with diethanolamine (DEA) as the adsorbent to analyze the effect of the flow rate and concentration of DEA on the separation of CO2/CH4. The collected gas had a CH4 content of 99.92% and a CO2 flux of 10.1059 × 10-3 mol m-2 s-1 while DEA at a concentration of 1 mol/L was flowing at a rate of 16 L/h. The highest separation factor occurred at this moment, which was 833.67. Overall, the CO2/CH4 separation performance in GLMC was enhanced with the use of the fluorinated OH/SiO2/PES composite membrane.
Collapse
Affiliation(s)
- Zhengda Lin
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Dandan Zhang
- Harbin Institute of Technology Hospital, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Yijun Liu
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Zhongming Zhang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Zhiying Zhao
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Bo Shao
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Rui Wu
- Guangdong Yuehai Water Investment Co., Ltd., Shenzhen, 518021, PR China
| | - Rui Fang
- Harbin Institute of Technology National Engineering Research Center of Urban Water Resources Co.,Ltd., No.73, Huanghe Road, Nangang Dist, Harbin, 150090, PR China
| | - Jie Yao
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
- Harbin Institute of Technology National Engineering Research Center of Urban Water Resources Co.,Ltd., No.73, Huanghe Road, Nangang Dist, Harbin, 150090, PR China
| |
Collapse
|
3
|
Jaleh B, Mousavi SS, Sajjadi M, Eslamipanah M, Maryaki MJ, Orooji Y, Varma RS. Synthesis of bentonite/Ag nanocomposite by laser ablation in air and its application in remediation. CHEMOSPHERE 2023; 315:137668. [PMID: 36581123 DOI: 10.1016/j.chemosphere.2022.137668] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/05/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
In this research, a simple, green, and efficient approach is described to produce novel bentonite/Ag nanocomposite wherein the preparation of Ag nanoparticles (Ag NPs) deployed the laser ablation method in air; Ag NPs are deposited on the bentonite via the magnetic stirring method. The structural and morphological characterization of the as-prepared bentonite/Ag nanocomposite (denoted as B/Ag30, 30 min being the laser ablation time) is accomplished using different methods. Additionally, the catalytic assessment of the ensued composite exhibited excellent catalytic reduction/degradation activity for common aqueous pollutants namely methyl orange (MO), congo red (CR) and 4-nitrophenol (4-NP) utilizing NaBH4 as reductant. Furthermore, the recycling tests displayed the high stability/reusability of B/Ag30 nanocomposite for at least 4 runs with retention of catalytic prowess.
Collapse
Affiliation(s)
- Babak Jaleh
- Department of Physics, Bu-Ali Sina University, 65174, Hamedan, Iran.
| | | | - Mohaddeseh Sajjadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | | | - Motahar Jafari Maryaki
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia; Research & Development Department, Shandong Advanced Materials Industry Association, Jinan 250200, Shandong, China.
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Palacky University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| |
Collapse
|
4
|
Characterisation and modelling the mechanics of cellulose nanofibril added polyethersulfone ultrafiltration membranes. Heliyon 2023; 9:e13086. [PMID: 36785816 PMCID: PMC9918776 DOI: 10.1016/j.heliyon.2023.e13086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
The performance of the membranes can be improved by adding the appropriate amount of nanomaterials to the polymeric membranes that can be used for water/wastewater treatment. In this study, the effects of polyvinylpyrrolidone (PVP), the impact of different amounts (0.5% and 1% wt.) of cellulose nanofibril (CNF), and the combined effects of PVP-CNF on the properties/performance of the polyethersulfone-based (PES-based) membrane are investigated. All PES-based ultrafiltration (UF) membranes are manufactured employing the phase inversion method and characterised via Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and the relevant techniques to determine the properties, including porosity, mean pore size, contact angle, water content, and pure water flux tests. Furthermore, the thermal properties of the prepared membranes are investigated using thermal gravimetric analysis (TGA) and differential thermal analysis (DTA) techniques. Experimental and numerical methods are applied for the mechanical characterisation of prepared membranes. For the experimental process, tensile tests under dry and wet conditions are conducted. The finite element (FE) method and Mori-Tanaka mean-field homogenisation are used as numerical methods to provide more detailed knowledge of membrane mechanics.
Collapse
|
5
|
Daneshnazar M, Jaleh B, Eslamipanah M, Varma RS. Optical and gas sensing properties of TiO2/RGO for methanol, ethanol and acetone vapors. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Raje A, Buhr K, Koll J, Lillepärg J, Abetz V, Handge UA. Open-Celled Foams of Polyethersulfone/Poly( N-vinylpyrrolidone) Blends for Ultrafiltration Applications. Polymers (Basel) 2022; 14:1177. [PMID: 35335507 PMCID: PMC8953762 DOI: 10.3390/polym14061177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/07/2022] [Accepted: 03/12/2022] [Indexed: 12/10/2022] Open
Abstract
Since membranes made of open porous polymer foams can eliminate the use of organic solvents during their manufacturing, a series of previous studies have explored the foaming process of various polymers including polyethersulfone (PESU) using physical blowing agents but failed to produce ultrafiltration membranes. In this study, blends containing different ratios of PESU and poly(N-vinylpyrrolidone) (PVP) were used for preparation of open-celled polymer foams. In batch foaming experiments involving a combination of supercritical CO2 and superheated water as blowing agents, blends with low concentration of PVP delivered uniform open-celled foams that consisted of cells with average cell size less than 20 µm and cell walls containing open pores with average pore size less than 100 nm. A novel sample preparation method was developed to eliminate the non-foamed skin layer and to achieve a high porosity. Flat sheet membranes with an average cell size of 50 nm in the selective layer and average internal pore size of 200 nm were manufactured by batch foaming a PESU blend with higher concentration of PVP and post-treatment with an aqueous solution of sodium hypochlorite. These foams are associated with a water-flux up to 45 L/(h m2 bar). Retention tests confirmed their applicability as ultrafiltration membranes.
Collapse
Affiliation(s)
- Aniket Raje
- Institute of Membrane Research, Helmholtz-Zentrum Hereon, Max-Planck-Strasse 1, 21502 Geesthacht, Germany; (A.R.); (K.B.); (J.K.); (J.L.); (V.A.)
| | - Kristian Buhr
- Institute of Membrane Research, Helmholtz-Zentrum Hereon, Max-Planck-Strasse 1, 21502 Geesthacht, Germany; (A.R.); (K.B.); (J.K.); (J.L.); (V.A.)
| | - Joachim Koll
- Institute of Membrane Research, Helmholtz-Zentrum Hereon, Max-Planck-Strasse 1, 21502 Geesthacht, Germany; (A.R.); (K.B.); (J.K.); (J.L.); (V.A.)
| | - Jelena Lillepärg
- Institute of Membrane Research, Helmholtz-Zentrum Hereon, Max-Planck-Strasse 1, 21502 Geesthacht, Germany; (A.R.); (K.B.); (J.K.); (J.L.); (V.A.)
| | - Volker Abetz
- Institute of Membrane Research, Helmholtz-Zentrum Hereon, Max-Planck-Strasse 1, 21502 Geesthacht, Germany; (A.R.); (K.B.); (J.K.); (J.L.); (V.A.)
- Institute of Physical Chemistry, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Ulrich A. Handge
- Institute of Membrane Research, Helmholtz-Zentrum Hereon, Max-Planck-Strasse 1, 21502 Geesthacht, Germany; (A.R.); (K.B.); (J.K.); (J.L.); (V.A.)
- Chair of Plastics Technology, Faculty of Mechanical Engineering, TU Dortmund University, Leonhard-Euler-Straße 5, 44227 Dortmund, Germany
| |
Collapse
|
7
|
Ashrafi G, Nasrollahzadeh M, Jaleh B, Sajjadi M, Ghafuri H. Biowaste- and nature-derived (nano)materials: Biosynthesis, stability and environmental applications. Adv Colloid Interface Sci 2022; 301:102599. [PMID: 35066374 DOI: 10.1016/j.cis.2022.102599] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 12/22/2022]
Abstract
Due to the environmental pollution issues and the supply of drinking/clean water, removal of both inorganic and organic (particularly dyes, nitroarenes, and heavy metals) to non-dangerous products and useful compounds are very important transformations. The deployment of sustainable and eco-friendly nanomaterials with exceptional structural and unique features such as high efficiency and stability/recyclability, high surface/volume ratio, low-cost production routes has become a priority; nonetheless, numerous significant challenges/restrictions still remained unresolved. The immobilization of green synthesized metal nanoparticles (NPs) on the natural materials and biowaste generated templates have been analyzed widely as a greener approach due to their environmentally friendly preparation methods, earth-abundance, cost-effectiveness with low energy consumption, biocompatibility, as well as adjustability in various cases of biomolecules as bioreducing agents. Natural and biowaste materials are widely considered as important sources to fabricate greener and biosynthesized types of metal, metal oxide, and metal sulfide nanomaterials using plant extracts. Integrating green synthesized nanoparticles with various biotemplates offers new practical composites for mitigating environmental challenges. In this review, degradation of dyes, reduction of toxic nitrophenols, absorption of heavy metals, and other hazardous/toxic environmental pollutants from contaminated water bodies using biowaste- and nature-derived nanomaterials are highlighted.
Collapse
Affiliation(s)
- Ghazaleh Ashrafi
- Department of Physics, Bu-Ali Sina University, 65174 Hamedan, Iran
| | | | - Babak Jaleh
- Department of Physics, Bu-Ali Sina University, 65174 Hamedan, Iran.
| | - Mohaddeseh Sajjadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Hossein Ghafuri
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
8
|
Farahbakhsh J, Vatanpour V, Khoshnam M, Zargar M. Recent advancements in the application of new monomers and membrane modification techniques for the fabrication of thin film composite membranes: A review. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.105015] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Ch-Th T, Manisekaran R, Santoyo-Salazar J, Schoefs B, Velumani S, Castaneda H, Jantrania A. Graphene oxide decorated TiO2 and BiVO4 nanocatalysts for enhanced visible-light-driven photocatalytic bacterial inactivation. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Alkhouzaam A, Qiblawey H. Functional GO-based membranes for water treatment and desalination: Fabrication methods, performance and advantages. A review. CHEMOSPHERE 2021; 274:129853. [PMID: 33581397 DOI: 10.1016/j.chemosphere.2021.129853] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/27/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
Graphene oxide (GO) and GO-based materials have gained a significant interest in the membrane synthesis and functionalization sector in the recent years. Inspired by their unique and tuneable properties, several GO-based nanomaterials have been investigated and utilized as effective nanofillers for various membranes in the water treatment, purification and desalination sectors. This paper comprehensively reviews the recent advances of GO utilization in pressure, concentration and thermal-driven membrane processes. A brief overview on GO particles, properties, synthesis and functionalization methods was provided. The conventional and the state-of-art fabrication methods of GO-based membranes were summarized and discussed, and consequently the GO-based membranes were classified into different categories. The applications, types, and the performance in terms of flux and rejection were summarized and reviewed. The advantages of GO-based membranes in terms of antifouling properties, bactericidal effects, mechanical strength and stability have been reviewed, too. The review gives insights on the future perspectives of GO functional materials and their potential use in the various membrane processes discussed herein.
Collapse
Affiliation(s)
- Abedalkader Alkhouzaam
- Department of Chemical Engineering, College of Engineering, Qatar University, P. O. Box, 2713, Doha, Qatar
| | - Hazim Qiblawey
- Department of Chemical Engineering, College of Engineering, Qatar University, P. O. Box, 2713, Doha, Qatar.
| |
Collapse
|
11
|
Polysulfone with glycopolymer for development of antifouling ultrafiltration membranes. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02583-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Influence of Sodium Hypochlorite Treatment on Pore Size Distribution of Polysulfone/Polyvinylpyrrolidone Membranes. MEMBRANES 2020; 10:membranes10110356. [PMID: 33228077 PMCID: PMC7699321 DOI: 10.3390/membranes10110356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 11/17/2022]
Abstract
This work was focused on the study of hypochlorite treatment on the pore size distribution of membranes. To this end, ultrafiltration membranes from a polysulfone/polyvinylpyrrolidone blend with a sponge-like structure were fabricated and exposed to hypochlorite solutions with different active chlorine concentrations for 4 h at ambient temperature. Liquid–liquid displacement and scanning electron microscopy were employed to study the limiting and surface pores, respectively. After treatment with 50 ppm hypochlorite solution at pH = 7.2, a five-fold increase in water permeance up to 1400 L/(m2·h·bar) was observed, accompanied by a 40% increase in the limiting pore sizes and almost a three-fold increase in the porosity. After 5000 ppm treatment at pH = 11.5, a 40% rise in the maximum limiting pore size and almost a two-fold increase in the porosity and permeance was observed, whereas the mean pore size was constant. Apparently, changes in the membrane structure at pH = 11.5 were connected with polyvinylpyrrolidone (PVP) degradation and wash-out, whereas at lower pH and despite lower active chlorine concentration, this process was coupled with polysulfone (PSf) destruction and removal.
Collapse
|
13
|
Donga C, Mishra SB, Abd-El-Aziz AS, Mishra AK. Advances in Graphene-Based Magnetic and Graphene-Based/TiO2 Nanoparticles in the Removal of Heavy Metals and Organic Pollutants from Industrial Wastewater. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01679-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|