1
|
Yuan J, Zhu Y, Wang J, Liu Z, Zhang T, Li P, Qiu F. Utilizing Waste Biomass from Agricultural and Forestry Sustainable Resources: Biomass Conversion to Functional Adsorbent Material for Efficient Removal of Total Phosphate in Practical Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39504414 DOI: 10.1021/acs.langmuir.4c03289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
The promotion of the utilization of waste agricultural and forestry resources (AFRs) as a means of combating environmental pollution represents an advanced and necessary development approach with the potential to achieve sustainable development. In this work, an advanced adsorbent with a functional Mg-Al bimetallic layer was prepared using waste sawdust biomass (WSD) as a raw material. The layer serves as the primary active component for adsorbing total phosphate from both simulated and real wastewater. The hierarchical structure of the Mg-Al bimetallic hydroxide-modified waste sawdust biomass (MA@WSD) has an abundance of nanosheets on its surface, providing ample binding sites and an enhanced specific surface area of 175.99 m2/g. Under the optimal conditions, the maximum removal efficiency toward phosphate can reach 99.99%. The adsorption of phosphate by MA@WSD follows the pseudo-second order kinetic (PSOK) model, indicating that chemisorption is the rate-determining step. Moreover, the thermodynamic data demonstrate the spontaneous nature of the adsorption process, indicating the favorable characteristics of the developed material. The adsorption mechanism can be summarized as the collaboration of physical adsorption, electrostatic interaction, and chemical adsorption. The results of the regeneration process indicate that MA@WSD exhibits a retention of 50.3% of its initial adsorption performance following the fifth testing cycle, thereby suggesting its potential for comparable reusability. The MA@WSD performs well in adsorbing total phosphate in real river water, and the removal efficiency of MA@WSD is evidently superior to commercial activated carbon, which is at least 70% higher than that of the commercial activated carbon. Besides, the 5-time average removal efficiency toward total phosphate by MA@WSD is 62.9%, evidently higher than the 29.1% of commercially available activated carbon, indicating its potential as an alternative for treating phosphorus-containing wastewater. The research provides theoretical support for harmless treatment, resource utilization, carbon sequestration, and emission reduction of waste biomass.
Collapse
Affiliation(s)
- Junjie Yuan
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yao Zhu
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jizhang Wang
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhigang Liu
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Pingping Li
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
2
|
Tu W, Cai W. Selective Adsorption of Hazardous Substances from Wastewater by Hierarchical Oxide Composites: A Review. TOXICS 2024; 12:447. [PMID: 39058099 PMCID: PMC11280863 DOI: 10.3390/toxics12070447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 07/28/2024]
Abstract
Large volumes of wastewater containing toxic contaminants (e.g., heavy metal ions, organic dyes, etc.) are produced from industrial processes including electroplating, mining, petroleum exploitation, metal smelting, etc., and proper treatment prior to their discharge is mandatory in order to alleviate the impacts on aquatic ecosystems. Adsorption is one of the most effective and practical methods for removing toxic substances from wastewater due to its simplicity, flexibility, and economics. Recently, hierarchical oxide composites with diverse morphologies at the micro/nanometer scale, and the combination advantages of oxides and composite components have been received wide concern in the field of adsorption due to their multi-level structures, easy functionalization characteristic resulting in their large transport passages, high surface areas, full exposure of active sites, and good stability. This review summarizes the recent progress on their typical preparation methods, mainly including the hydrothermal/solvothermal method, coprecipitation method, template method, polymerization method, etc., in the field of selective adsorption and competitive adsorption of hazardous substances from wastewater. Their formation processes and different selective adsorption mechanisms, mainly including molecular/ion imprinting technology, surface charge effect, hard-soft acid-base theory, synergistic effect, and special functionalization, were critically reviewed. The key to hierarchical oxide composites research in the future is the development of facile, repeatable, efficient, and scale preparation methods and their dynamic adsorption with excellent cyclic regeneration adsorption performance instead of static adsorption for actual wastewater. This review is beneficial to broaden a new horizon for rational design and preparation of hierarchical oxide materials with selective adsorption of hazardous substances for wastewater treatment.
Collapse
Affiliation(s)
| | - Weiquan Cai
- Guangzhou Higher Education Mega Center, School of Chemistry and Chemical Engineering, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, China;
| |
Collapse
|
3
|
Wang CY, Wang Q, Zhou HD, Fang X, Zeng Q, Zhu G. Adsorption of phosphate over a novel magnesium-loaded sludge-based biochar. PLoS One 2024; 19:e0301986. [PMID: 38626158 PMCID: PMC11020854 DOI: 10.1371/journal.pone.0301986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/25/2024] [Indexed: 04/18/2024] Open
Abstract
The production of sludge-based biochar to recover phosphorus (P) from wastewater and reuse the recovered phosphorus as agricultural fertilizer is a preferred process. This article mainly studied the removal of phosphate (PO4-P) from aqueous solution by synthesizing sludge-based biochar (MgSBC-0.1) from anaerobic fermentation sludge treated with magnesium (Mg)-loading-modification, and compared it with unmodified sludge-based biochar (SBC). The physicochemical properties, adsorption efficiency, and adsorption mechanism of MgSBC-0.1 were studied. The results showed that the surface area of MgSBC-0.1 synthesized increased by 5.57 times. The material surface contained MgO, Mg(OH)2, and CaO nanoparticles. MgSBC-0.1 can effectively remove phosphate in the initial solution pH range of 3.00-7.00, with a fitted maximum phosphorus adsorption capacity of 379.52 mg·g-1. The adsorption conforms to the pseudo second-order kinetics model and Langmuir isotherm adsorption curve. The characterization of the adsorbed composite material revealed the contribution of phosphorus crystal deposition and electrostatic attraction to phosphorus absorption.
Collapse
Affiliation(s)
- Chu-Ya Wang
- School of Energy and Environment, Southeast University, Nanjing, China
| | - Qi Wang
- School of Energy and Environment, Southeast University, Nanjing, China
| | - Heng-Deng Zhou
- School of Energy and Environment, Southeast University, Nanjing, China
| | - Xin Fang
- School of Energy and Environment, Southeast University, Nanjing, China
| | - Qi Zeng
- School of Energy and Environment, Southeast University, Nanjing, China
| | - Guangcan Zhu
- School of Energy and Environment, Southeast University, Nanjing, China
| |
Collapse
|
4
|
Sheng X, Chen S, Zhao Z, Li L, Zou Y, Shi H, Shao P, Yang L, Wu J, Tan Y, Lai X, Luo X, Cui F. Metal element-based adsorbents for phosphorus capture: Chaperone effect, performance and mechanism. CHEMOSPHERE 2024; 352:141350. [PMID: 38309601 DOI: 10.1016/j.chemosphere.2024.141350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
Excessive phosphorus (P) enters the water bodies via wastewater discharges or agricultural runoff, triggering serious environmental problems such as eutrophication. In contrast, P as an irreplaceable key resource, presents notable supply-demand contradictions due to ineffective recovery mechanisms. Hence, constructing a system that simultaneously reduce P contaminants and effective recycling has profound theoretical and practical implications. Metal element-based adsorbents, including metal (hydro) oxides, layered double hydroxides (LDHs) and metal-organic frameworks (MOFs), exhibit a significant chaperone effect stemming from strong orbital hybridization between their intrinsic Lewis acid sites and P (Lewis base). This review aims to parse the structure-effect relationship between metal element-based adsorbents and P, and explores how to optimize the P removal properties. Special emphasis is given to the formation of the metal-P chemical bond, which not only depends on the type of metal in the adsorbent but also closely relates to its surface activity and pore structure. Then, we delve into the intrinsic mechanisms behind these adsorbents' remarkable adsorption capacity and precise targeting. Finally, we offer an insightful discussion of the prospects and challenges of metal element-based adsorbents in terms of precise material control, large-scale production, P-directed adsorption and effective utilization.
Collapse
Affiliation(s)
- Xin Sheng
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Shengnan Chen
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Zhiwei Zhao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Li Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China.
| | - Yuanpeng Zou
- School of Foreign Languages and Cultures, Chongqing University, 400044, PR China
| | - Hui Shi
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Penghui Shao
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Liming Yang
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Jingsheng Wu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Yaofu Tan
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Xinyuan Lai
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Xubiao Luo
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China; School of Life Science, Jinggangshan University, Ji'an, 343009, PR China
| | - Fuyi Cui
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| |
Collapse
|
5
|
Xia S, Liang S, Qin Y, Chen W, Xue B, Zhang B, Xu G. Significant Improvement of Adsorption for Phosphate Removal by Lanthanum-Loaded Biochar. ACS OMEGA 2023; 8:24853-24864. [PMID: 37483259 PMCID: PMC10357522 DOI: 10.1021/acsomega.3c00788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023]
Abstract
Due to eutrophication, removing phosphate ions from wastewater has received a lot of attention. In order to improve the phosphorus adsorption capacity of the material, this study used biomass pyrolysis to create a series of biochars modified with metal chloride ions. In accordance with adsorption tests, lanthanum-loaded biochar (LCBC) had a significant phosphorus adsorption capacity of approximately 666.67 mg/g, which was 30 times greater than that of pristine biochar. Adsorption kinetic analysis revealed that the LCBC's adsorption process could be fitted to the pseudo-secondary kinetic equation, indicating that chemical processes were primarily responsible for controlling the adsorption process. Zeta potential, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy analysis showed that the main adsorption mechanism of LCBC for phosphate removal was electrostatic attraction of protonated H+ with negatively charged mono-hydrogen phosphate and dihydrogen phosphate ions and complexation reaction of the C=O on the carboxyl group and P=O on the phosphate group with the oxygen on the phosphate group and hydroxyl group. According to regeneration performance results, LCBC performed relatively better than as-prepared adsorbents, and the phosphate removal rate was approximately 75.1% after the fifth regeneration cycle. The study provided a potential approach for creating and preparing an adsorbent with high adsorption for phosphate removal.
Collapse
Affiliation(s)
- Sainan Xia
- Department
of Polymer Material and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Shengrong Liang
- Department
of Polymer Material and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Yixue Qin
- Department
of Polymer Material and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Weijie Chen
- National
Engineering Research Center for Compounding and Modification of Polymer
Materials, Guiyang 550014, China
| | - Bin Xue
- National
Engineering Research Center for Compounding and Modification of Polymer
Materials, Guiyang 550014, China
| | - Bingbing Zhang
- Department
of Resources and Environmental, College of Resources and Environmental
Engineering, Guizhou University, Guiyang 550025, China
- National
Engineering Research Center for Compounding and Modification of Polymer
Materials, Guiyang 550014, China
| | - Guomin Xu
- Department
of Polymer Material and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
- National
Engineering Research Center for Compounding and Modification of Polymer
Materials, Guiyang 550014, China
| |
Collapse
|
6
|
Yuan Z, Sun X, Hua J, Zhu Y, Yuan J, Qiu F. Upcycling Watermelon Peel Waste into a Sustainable Environment-Friendly Biochar for Assessment of Effective Adsorption Property. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2023. [DOI: 10.1007/s13369-022-07397-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
7
|
Guo S, Liu Y, Zhang W, Wang Y, Xiao B, Gao Y. N-doped carbon fibers in situ prepared by hydrothermal carbonization of Camellia sinensis branches waste for efficient removal of heavy metal ions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:88951-88961. [PMID: 35841510 DOI: 10.1007/s11356-022-21923-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
N-doped carbon fibers (NCFs) were in situ prepared by Camellia sinensis branches waste through hydrothermal carbonization with urea/ZnCl2 at 160-280 °C under 0.8-8.9 MPa. The structural characteristics of NCFs were investigated by elemental analysis, SEM, TEM, XRD, XPS, Raman spectra, and BET surface area. The highest N content of NCFs obtained at 280 °C was 8.96%, and the main forms of doped N were pyridinic N, pyrrolic N, and graphitic N. Moreover, NCFs were applied to remove metal ions successfully. The results showed that NCF-240 had the maximum adsorption amounts of 106.52, 125.23, and 153.49 mg/g for Cu2+, Pb2+, and Zn2+, respectively, while NCF-280 had the best removal ability on Cr6+ (145.67 mg/g). Finally, it demonstrated that the adsorption behavior of NCFs was well fitted by the pseudo-second-order kinetic and the Langmuir adsorption isotherm models.
Collapse
Affiliation(s)
- Shasha Guo
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Yubo Liu
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Weiguo Zhang
- Shaanxi Dongyu Biotechnology Co., Ltd., Xixiang, 723500, China
| | | | - Bin Xiao
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Yuefang Gao
- College of Horticulture, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
8
|
Preparation and Phosphorus Removal Performance of Zr–La–Fe Ternary Composite Adsorbent Embedded with Sodium Alginate. Processes (Basel) 2022. [DOI: 10.3390/pr10091761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Using single metal salts of zirconium, lanthanum, and iron as raw materials and sodium alginate as a cross-linking agent, a new composite adsorbent was prepared via the co-precipitation method and embedding immobilization technology, and its phosphorus adsorption performance in wastewater was evaluated. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used for characterization, and a 0.5 mol·L−1 sodium hydroxide solution was used to regenerate the adsorbent. The experimental results demonstrated that the adsorption rate reached 99.88% when the wastewater volume was 50 mL, the initial concentration of phosphorus-containing wastewater was 5 mg·L−1, the pH was 5, the dosage of composite adsorbent was 0.2 g, and the adsorption time was 200 min. The prepared adsorbent could reduce the initial phosphorus concentration of 5 mg·L−1 to 0.006 mg·L−1 in simulated wastewater, and from 4.17 mg·L−1 in urban sewage to undetected (<0.01 mg·L−1), thus meeting the discharge requirements of the grade A standard of the Urban Sewage Treatment Plant Pollutant Discharge Standard (GB18918-2002). The adsorption process conformed to the Freundlich adsorption isothermal equation and quasi-second-order kinetic equation, and the adsorption reaction was exothermic and spontaneous. More importantly, after three lye regeneration tests, the removal rate of phosphorus in water remained above 68%, that is, the composite adsorbent could be reproducibly fabricated and recycled. The characterization results showed that the surface of the composite adsorbent was rough, with a complex pore structure. After phosphorus removal, the surface morphology of the composite adsorbent showed a similar honeycomb structure, with a P-H, P-O stretching vibration peak and a characteristic P2p peak. At the same time, the proportion of hydroxyl groups (M-OH) on the metal surface decreased after adsorption. Our findings thus demonstrate that the mechanism of phosphorus removal is mainly based on the coordination exchange reaction between phosphate and metal active sites and surface hydroxyl groups, resulting in the formation of granular phosphate deposits.
Collapse
|
9
|
The Application of Eco-Friendly Fe–Al Bimetallic Oxide/Biochar Adsorbent Composites with Waste Rice Husk for Removal of Arsenic at Low Concentration. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-021-02085-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|