1
|
Afzal S, Rehman AU, Najam T, Hossain I, Abdelmotaleb MAI, Riaz S, Karim MR, Shah SSA, Nazir MA. Recent advances of MXene@MOF composites for catalytic water splitting and wastewater treatment approaches. CHEMOSPHERE 2024; 364:143194. [PMID: 39209044 DOI: 10.1016/j.chemosphere.2024.143194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
MXenes are a group of 2D material which have been derived from the layered transition metal nitrides and carbides and have the characteristics like electrical conductivity, high surface area and variable surface chemical composition. Self-assembly of clusters/metal ions and organic linkers forms metal organic framework (MOF). Their advantages of ultrahigh porosity, highly exposed active sites and many pore architectures have garnered them a lot of attention. But poor conductivity and instability plague several conventional MOF. To address the issue, MOF can be linked with MXenes that have rich surface functional groups and excellent electrical conductivity. In this review, different etching methods for exfoliation of MXene along with the synthesis methods of MXene/MOF composites are reviewed, including hydrothermal method, solvothermal method, in-situ growth method, and self-assembly method. Moreover, application of these MXene/MOF composites for catalytic water splitting and wastewater treatment were also discussed in details. In addition to increasing a single MOF conductivity and stability, MXenes can add a variety of new features, such the template effect. Due to these benefits, MXene/MOF composites can be effectively used in several applications, including photocatalytic/electrocatalytic water splitting, adsorption and degradation of pollutants from wastewater. Finally, the authors explored the current challenges and the future opportunities to improve the efficiency of MXene/MOF composites.
Collapse
Affiliation(s)
- Samreen Afzal
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Aziz Ur Rehman
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Tayyaba Najam
- Research and Development Division, SciTech International Pvt Ltd, G-10/1 Islamabad, Pakistan
| | - Ismail Hossain
- Department of Nuclear and Renewable Energy, Ural Federal University, Yekaterinburg, 620002, Russia
| | - Mostafa A I Abdelmotaleb
- Research Center for Advanced Materials Science (RCAMS), Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Sundas Riaz
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Md Rezaul Karim
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Syed Shoaib Ahmad Shah
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan.
| | - Muhammad Altaf Nazir
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| |
Collapse
|
2
|
Zhang X, Zhu Z, Guo Z, Huang Z, Zheng X, Wang X, Zhu L, Zhang G, Liu B, Xu D. Magnetic FNS/MILs nanofibers for highly efficient removal of norfloxacin via adsorption and Fenton-like reaction. CHEMOSPHERE 2024; 359:142258. [PMID: 38719119 DOI: 10.1016/j.chemosphere.2024.142258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/22/2024] [Accepted: 05/04/2024] [Indexed: 05/14/2024]
Abstract
Iron-containing MOFs have attracted extensive interest as promising Fenton-like catalysts. In this work, magnetic Fe3O4 nanofiber (FNS)/MOFs composites with stable structure, included FNS/MIL-88B, FNS/MIL-88A and FNS/MIL-100, were prepared via the in-situ solvothermal method. The surface of the obtained fibers was covered by a dense and continuous MOFs layer, which could effectively solve the agglomeration problem of MOFs powder and improved the catalytic performance. The adsorption and catalytic properties of FNS/MOFs composites were evaluated by removal of norfloxacin. FNS/MIL-88B showed the best performance with a maximum adsorption capacity up to 214.09 mg/g, and could degrade 99% of NRF in 60 min. Meanwhile, FNS/MIL-88B had a saturation magnetization of 20 emu/g, and could be rapidly separated by an applied magnetic field. The self-supported nanofibers allowed the adequate contact between MOFs and pollutants, and promoted the catalytic activity and high stability. We believe that this work provided a new idea for the design and preparation of Fenton-like catalysts especially MOFs composites.
Collapse
Affiliation(s)
- Xiaoqian Zhang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, PR China
| | - Ze Zhu
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, PR China
| | - Zhenfeng Guo
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, PR China
| | - Ziting Huang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, PR China
| | - Xinhua Zheng
- Technology Center of Jinan Customs District, Jinan, 250014, PR China
| | - Xinqiang Wang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, PR China.
| | - Luyi Zhu
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, PR China
| | - Guanghui Zhang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, PR China
| | - Benxue Liu
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, PR China
| | - Dong Xu
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, PR China
| |
Collapse
|
3
|
Koley P, Jakku R, Hosseinnejad T, Periasamy S, Bhargava SK. Immobilizing nanozymes on 3D-printed metal substrates for enhanced peroxidase-like activity and trace-level glucose detection. NANOSCALE 2024; 16:5561-5573. [PMID: 38258585 DOI: 10.1039/d3nr05427f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The prevalence of 3D-printed portable biomedical sensing devices, which are fashioned mainly from plastic and polymer materials, introduces a pressing concern due to their limited reusability and consequential generation of substantial disposable waste. Considering this, herein, we pioneered a ground-breaking advancement, i.e., a 3D-printed metal substrate-based enzyme. Our inventive methodology involved the synthesis of a thermally degraded Fe-based metal-organic framework, DEG 500, followed by its deposition on a 3D-printed metal substrate composed of Ti-Al-V alloy. This novel composite exhibited remarkable peroxidase-like activity in a range of different temperatures and pH, coupled with the ability to detect glucose in real-world samples such as blood and fruit juices. The exceptional enzymatic behaviour was attributed to the diverse iron (Fe) oxidation states and the presence of oxygen vacancies, as evidenced through advanced characterization techniques. Fundamentally, we rigorously explored the mechanistic pathway through controlled studies and theoretical calculations, culminating in a transformative stride toward more sustainable and effective biomedical sensing practices.
Collapse
Affiliation(s)
- Paramita Koley
- Centre for Advanced Materials & Industrial Chemistry (CAMIC), School of Applied Sciences, RMIT University, GPO Box 2476, Melbourne 3001, Australia.
| | - Ranjithkumar Jakku
- Centre for Advanced Materials & Industrial Chemistry (CAMIC), School of Applied Sciences, RMIT University, GPO Box 2476, Melbourne 3001, Australia.
| | - Tayebeh Hosseinnejad
- Centre for Advanced Materials & Industrial Chemistry (CAMIC), School of Applied Sciences, RMIT University, GPO Box 2476, Melbourne 3001, Australia.
| | - Selvakannan Periasamy
- Centre for Advanced Materials & Industrial Chemistry (CAMIC), School of Applied Sciences, RMIT University, GPO Box 2476, Melbourne 3001, Australia.
| | - Suresh K Bhargava
- Centre for Advanced Materials & Industrial Chemistry (CAMIC), School of Applied Sciences, RMIT University, GPO Box 2476, Melbourne 3001, Australia.
| |
Collapse
|
4
|
Zhi K, Xu J, Li S, Luo L, Liu D, Li Z, Guo L, Hou J. Progress in the Elimination of Organic Contaminants in Wastewater by Activation Persulfate over Iron-Based Metal-Organic Frameworks. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:473. [PMID: 38470802 DOI: 10.3390/nano14050473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/25/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024]
Abstract
The release of organic contaminants has grown to be a major environmental concern and a threat to the ecology of water bodies. Persulfate-based Advanced Oxidation Technology (PAOT) is effective at eliminating hazardous pollutants and has an extensive spectrum of applications. Iron-based metal-organic frameworks (Fe-MOFs) and their derivatives have exhibited great advantages in activating persulfate for wastewater treatment. In this article, we provide a comprehensive review of recent research progress on the significant potential of Fe-MOFs for removing antibiotics, organic dyes, phenols, and other contaminants from aqueous environments. Firstly, multiple approaches for preparing Fe-MOFs, including the MIL and ZIF series were introduced. Subsequently, removal performance of pollutants such as antibiotics of sulfonamides and tetracyclines (TC), organic dyes of rhodamine B (RhB) and acid orange 7 (AO7), phenols of phenol and bisphenol A (BPA) by various Fe-MOFs was compared. Finally, different degradation mechanisms, encompassing free radical degradation pathways and non-free radical degradation pathways were elucidated. This review explores the synthesis methods of Fe-MOFs and their application in removing organic pollutants from water bodies, providing insights for further refining the preparation of Fe-MOFs.
Collapse
Affiliation(s)
- Keke Zhi
- Department of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
- State Key Laboratory, Heavy Oil Processing-Karamay Branch, Karamay 834000, China
| | - Jiajun Xu
- Department of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
| | - Shi Li
- Department of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
| | - Lingjie Luo
- Department of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
| | - Dong Liu
- Department of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
| | - Zhe Li
- State Key Laboratory, Heavy Oil Processing-Karamay Branch, Karamay 834000, China
- Department of Petroleum, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
| | - Lianghui Guo
- Department of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
| | - Junwei Hou
- Department of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
- State Key Laboratory, Heavy Oil Processing-Karamay Branch, Karamay 834000, China
| |
Collapse
|
5
|
Gatou MA, Vagena IA, Lagopati N, Pippa N, Gazouli M, Pavlatou EA. Functional MOF-Based Materials for Environmental and Biomedical Applications: A Critical Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2224. [PMID: 37570542 PMCID: PMC10421186 DOI: 10.3390/nano13152224] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
Over the last ten years, there has been a growing interest in metal-organic frameworks (MOFs), which are a unique category of porous materials that combine organic and inorganic components. MOFs have garnered significant attention due to their highly favorable characteristics, such as environmentally friendly nature, enhanced surface area and pore volume, hierarchical arrangements, and adjustable properties, as well as their versatile applications in fields such as chemical engineering, materials science, and the environmental and biomedical sectors. This article centers on examining the advancements in using MOFs for environmental remediation purposes. Additionally, it discusses the latest developments in employing MOFs as potential tools for disease diagnosis and drug delivery across various ailments, including cancer, diabetes, neurological disorders, and ocular diseases. Firstly, a concise overview of MOF evolution and the synthetic techniques employed for creating MOFs are provided, presenting their advantages and limitations. Subsequently, the challenges, potential avenues, and perspectives for future advancements in the utilization of MOFs in the respective application domains are addressed. Lastly, a comprehensive comparison of the materials presently employed in these applications is conducted.
Collapse
Affiliation(s)
- Maria-Anna Gatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| | - Ioanna-Aglaia Vagena
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.-A.V.); (N.L.); (M.G.)
| | - Nefeli Lagopati
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.-A.V.); (N.L.); (M.G.)
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece;
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.-A.V.); (N.L.); (M.G.)
- School of Science and Technology, Hellenic Open University, 26335 Patra, Greece
| | - Evangelia A. Pavlatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| |
Collapse
|
6
|
Gomes Souza F, Pal K, Ampah JD, Dantas MC, Araújo A, Maranhão F, Domingues P. Biofuels and Nanocatalysts: Python Boosting Visualization of Similarities. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1175. [PMID: 36770184 PMCID: PMC9921263 DOI: 10.3390/ma16031175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Among the most relevant themes of modernity, using renewable resources to produce biofuels attracts several countries' attention, constituting a vital part of the global geopolitical chessboard since humanity's energy needs will grow faster and faster. Fortunately, advances in personal computing associated with free and open-source software production facilitate this work of prospecting and understanding complex scenarios. Thus, for the development of this work, the keywords "biofuel" and "nanocatalyst" were delivered to the Scopus database, which returned 1071 scientific articles. The titles and abstracts of these papers were saved in Research Information Systems (RIS) format and submitted to automatic analysis via the Visualization of Similarities Method implemented in VOSviewer 1.6.18 software. Then, the data extracted from the VOSviewer were processed by software written in Python, which allowed the use of the network data generated by the Visualization of Similarities Method. Thus, it was possible to establish the relationships for the pair between the nodes of all clusters classified by Link Strength Between Items or Terms (LSBI) or by year. Indeed, other associations should arouse particular interest in the readers. However, here, the option was for a numerical criterion. However, all data are freely available, and stakeholders can infer other specific connections directly. Therefore, this innovative approach allowed inferring that the most recent pairs of terms associate the need to produce biofuels from microorganisms' oils besides cerium oxide nanoparticles to improve the performance of fuel mixtures by reducing the emission of hydrocarbons (HC) and oxides of nitrogen (NOx).
Collapse
Affiliation(s)
- Fernando Gomes Souza
- Biopolymers & Sensors Lab, Instituto de Macromoléculas Professora Eloisa Mano, Centro de Tecnologia-Cidade Universitária, Universidade Federal de Rio de Janeiro, Rio de Janeiro 21941-914, RJ, Brazil
- Biopolymers & Sensors Lab, Programa de Engenharia da Nanotecnologia, COPPE, Centro de Tecnologia-Cidade Universitária, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-914, RJ, Brazil
| | - Kaushik Pal
- University Center for Research and Development (UCRD), Department of Physics, Chandigarh University, Ludhiana–Chandigarh State Hwy, Mohali 140413, Punjab, India
| | | | - Maria Clara Dantas
- Biopolymers & Sensors Lab, Programa de Engenharia da Nanotecnologia, COPPE, Centro de Tecnologia-Cidade Universitária, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-914, RJ, Brazil
| | - Aruzza Araújo
- LABPROBIO, Institute of Chemistry, Universidade Federal do Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Fabíola Maranhão
- Biopolymers & Sensors Lab, Instituto de Macromoléculas Professora Eloisa Mano, Centro de Tecnologia-Cidade Universitária, Universidade Federal de Rio de Janeiro, Rio de Janeiro 21941-914, RJ, Brazil
| | - Priscila Domingues
- Biopolymers & Sensors Lab, Programa de Engenharia da Nanotecnologia, COPPE, Centro de Tecnologia-Cidade Universitária, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-914, RJ, Brazil
| |
Collapse
|
7
|
Fang X, Zou J, Ma N, Dai W. Boosting the Adsorption Performance of Thiophenic Sulfur Compounds with a Multimetallic Dual Metal-Organic Framework Composite. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14451-14464. [PMID: 36378784 DOI: 10.1021/acs.langmuir.2c02318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Adsorptive desulfurization over metal-organic frameworks (MOFs) remains a challenge in maintaining good performance in the presence of water. Herein, multimetallic Fe/Ni/Cu/Zn-(MIL-88B)-on-(MOF-5) is first achieved through phase-competition-driven growth technology. The adsorption performance of thiophene (Th), benzothiophene (BT), and dibenzothiophene (DBT) in model fuels is systematically investigated at mild temperature and follows the order Fe/Ni/Cu/Zn-(MIL-88B)-on-(MOF-5) > MOF-5 > MIL-88B. Excellent adsorptive activity is mainly ascribed to the associative effects of multimetal active sites, suitable pore sizes and shapes, acid-base interactions, and complexation. Meanwhile, MIL-88B exhibits a "brick-wall" effect and effectively enhances the water stability of Fe/Ni/Cu/Zn-(MIL-88B)-on-(MOF-5) more than does MOF-5. Fe/Ni/Cu/Zn-(MIL-88B)-on-(MOF-5) exhibits superior stability even after being immersed in water for 5 days, maintaining 77, 77, and 81% of the initial DBT, BT, and Th uptake capacities. After five periods of regeneration, more than 90% of the desulfurization capacity of Fe/Ni/Cu/Zn-(MIL-88B)-on-(MOF-5) was recovered. This work provides a new strategy for the synthesis of desirable MOF-on-MOF, promoting its potential application to adsorption desulfurization.
Collapse
|