1
|
Chattopadhyay M, Jenkins EC, Janssen W, Mashaka T, Germain D. Idiosyncratic nature of lactation reveals link to breast cancer risk. RESEARCH SQUARE 2024:rs.3.rs-4601714. [PMID: 38978600 PMCID: PMC11230499 DOI: 10.21203/rs.3.rs-4601714/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Breastfeeding protects against breast cancer in some women but not others, however the mechanism remains elusive. Lactation requires intense secretory activity of the endoplasmic reticulum (ER) for the production of milk proteins and ER-mitochondria contacts for lipid synthesis. We show that in female mice that share the same nuclear genome (BL/6) but differ in mitochondrial genomes (C57 or NZB), the biological processes engaged during lactation are entirely different at the sub-cellular organization and transcriptional levels resulting in anti-tumorigenic lactation in BL/6C57 females and pro-tumorigenic lactation in BL/6NZB females. Single cell sequencing identified a sub-population of cells, uniquely amplified during lactation in BL/6NZB females, which shares the genetic signature that characterizes post-partum breast cancer (PPBC) in humans relative to matched breast cancers in never pregnant women. Our data indicate that differences in ER and mitochondrial-stress responses during lactation between genotypes inadvertently leads to loss of p53 tumor suppressor function in BL/6NZB females allowing the expansion of the PPBC-like sub-population of cells. Overall, our data reveals the unexpected idiosyncratic nature of lactation and its impacts on the risk of the development of PPBC.
Collapse
Affiliation(s)
- Mrittika Chattopadhyay
- Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, Department of Medicine, Division of Hematology/ Oncology, New York, 10029, NY, USA
| | - Edmund Charles Jenkins
- Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, Department of Medicine, Division of Hematology/ Oncology, New York, 10029, NY, USA
| | - William Janssen
- Icahn School of Medicine at Mount Sinai, Microscopy and Advanced Bioimaging Core, New York, 10029, NY, USA
| | - Thelma Mashaka
- Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, Department of Medicine, Division of Hematology/ Oncology, New York, 10029, NY, USA
| | - Doris Germain
- Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, Department of Medicine, Division of Hematology/ Oncology, New York, 10029, NY, USA
| |
Collapse
|
2
|
Bernhardt SM, Ozaki MK, Betts C, Bleyle LA, DeBarber AE, Fornetti J, Liberty AL, Wilde De E, Zhang Y, Xia Z, Schedin P. Altered liver metabolism post-wean abolishes efficacy of vitamin D for breast cancer prevention in a mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596304. [PMID: 38854129 PMCID: PMC11160686 DOI: 10.1101/2024.05.28.596304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Young women have increased risk of vitamin D deficiency, which may increase breast cancer incidence. Here, we assessed the anti-cancer efficacy of vitamin D in mouse models of young-onset breast cancer. In never-pregnant mice, vitamin D supplementation increased serum 25(OH)D and hepatic 1,25(OH)2D3, reduced tumor size, and associated with anti-tumor immunity. These anti-tumor effects were not replicated in a mouse model of postpartum breast cancer, where hepatic metabolism of vitamin D was suppressed post-wean, which resulted in deficient serum 25(OH)D and reduced hepatic 1,25(OH)2D3. Treatment with active 1,25(OH)2D3 induced hypercalcemia exclusively in post-wean mice, highlighting metabolic imbalance post-wean. RNAseq revealed suppressed CYP450 expression postpartum. In sum, we provide evidence that vitamin D anti-tumor activity is mediated through immunomodulatory mechanisms and is ineffective in the post-wean window due to altered hepatic metabolism. These findings have implications for suppressed xenobiotic metabolism in postpartum women beyond vitamin D.
Collapse
Affiliation(s)
- Sarah M Bernhardt
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Michelle K Ozaki
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Courtney Betts
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Lisa A Bleyle
- Bioanalytical Shared Resource/Pharmacokinetics Core Facility, University Shared Resources, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Andrea E DeBarber
- Bioanalytical Shared Resource/Pharmacokinetics Core Facility, University Shared Resources, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Jaime Fornetti
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, 84112, USA
| | - Abigail L Liberty
- Division of Complex Family Planning, Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Elise Wilde De
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Yi Zhang
- Computational Biology Program, Oregon Health & Science University, Portland, OR 97201, USA
| | - Zheng Xia
- Computational Biology Program, Oregon Health & Science University, Portland, OR 97201, USA
| | - Pepper Schedin
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
3
|
Mogus JP, Matouskova K, Clark ZW, Jerry DJ, Vandenberg LN. Effects of butyl benzyl phthalate exposure during pregnancy and lactation on the post-involution mammary gland. Reprod Toxicol 2023; 122:108470. [PMID: 37743007 DOI: 10.1016/j.reprotox.2023.108470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/17/2023] [Accepted: 09/04/2023] [Indexed: 09/26/2023]
Abstract
The mammary gland undergoes comprehensive reorganization during pregnancy, lactation, and subsequent involution. Following involution, the mammary gland has structural and functional differences compared to the gland of a nulliparous female. These parity-associated changes are regulated by hormones and may be vulnerable to endocrine-disrupting chemicals (EDCs). In this study, we evaluated the long-term effects of butyl benzyl phthalate (BBP), an estrogenic plasticizer, on the parous mouse mammary gland. Pregnant BALB/c mice were treated with 0, 3, 500, or 18000 µg/kg/day BBP throughout both pregnancy and the lactational period. The litters born to these females were evaluated for litter size and growth. The parous females were then kept for five weeks following weaning of the pups, during which period there was no exposure to BBP. After five weeks of post-weaning, mammary glands were collected and assessed for changes in histomorphology, steroid receptor expression, innate immune cell number, and gene expression. An unexposed age-matched nulliparous control was also evaluated as a comparator group. BBP increased male and female pup weight at puberty and female offspring in adulthood. BBP also altered innate immune cells in the post-involution mammary gland, reducing the effect of parity on macrophages. Lastly, BBP modestly increased mammary gland ductal complexity and periductal structure, but had no effect on expression of estrogen receptor, progesterone receptor, or a marker of proliferation. These results suggest that BBP may interfere with some effects of parity on the mouse mammary gland and induce weight gain in exposed offspring.
Collapse
Affiliation(s)
- Joshua P Mogus
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Klara Matouskova
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Zachary W Clark
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - D Joseph Jerry
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA, USA; Pioneer Valley Life Sciences Institute, Springfield, MA, USA
| | - Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
4
|
Doyle M, Kwami N, Joshi J, Arendt LM, McCready J. Interaction between Macrophages and Adipose Stromal Cells Increases the Angiogenic and Proliferative Potential of Pregnancy-Associated Breast Cancers. Cancers (Basel) 2023; 15:4500. [PMID: 37760470 PMCID: PMC10526911 DOI: 10.3390/cancers15184500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Pregnancy associated breast cancers (PABCs) exhibit increased aggressiveness and overall poorer survival. During lactation, changes take place in the breast tissue microenvironment that lead to increased macrophage recruitment and alterations in adipose stromal cells (ASC-Ls). The interaction of these cells in PABCs could play a role in the increased aggressiveness of these cancers. We utilized an in vitro co-culture model to recreate the interactions of ASC-Ls and macrophages in vivo. We performed qRT-PCR to observe changes in gene expression and cytokine arrays to identify transcriptional changes that result in an altered microenvironment. Additionally, functional assays were performed to further elicit how these changes affect tumorigenesis. The co-culture of ASC-Ls and macrophages altered both mRNA expression and cytokine secretion in a tumor promoting manner. Tumorigenic cytokines, such as IL-6, CXCL1, CXCL5, and MMP-9 secretion levels, were enhanced in the co-culture. Additionally, conditioned media from the co-culture elevated the tumor cell proliferation and angiogenic potential of endothelial cells. These finds indicate that the changes seen in the microenvironment of PABC, specifically the secretion of cytokines, play a role in the increased tumorigenesis of PABCs by altering the microenvironment to become more favorable to tumor progression.
Collapse
Affiliation(s)
- Michael Doyle
- Department of Biological and Physical Sciences, Assumption University, 500 Salisbury St., Worcester, MA 01609, USA
| | - Noor Kwami
- Department of Biological and Physical Sciences, Assumption University, 500 Salisbury St., Worcester, MA 01609, USA
| | - Jaitri Joshi
- Department of Comparative Biosciences, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA
| | - Lisa M. Arendt
- Department of Comparative Biosciences, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA
| | - Jessica McCready
- Department of Biological and Physical Sciences, Assumption University, 500 Salisbury St., Worcester, MA 01609, USA
| |
Collapse
|
5
|
Crump LS, Kines KT, Richer JK, Lyons TR. Breast cancers co-opt normal mechanisms of tolerance to promote immune evasion and metastasis. Am J Physiol Cell Physiol 2022; 323:C1475-C1495. [PMID: 36189970 PMCID: PMC9662806 DOI: 10.1152/ajpcell.00189.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022]
Abstract
Normal developmental processes, such as those seen during embryonic development and postpartum mammary gland involution, can be reactivated by cancer cells to promote immune suppression, tumor growth, and metastatic spread. In mammalian embryos, paternal-derived antigens are at risk of being recognized as foreign by the maternal immune system. Suppression of the maternal immune response toward the fetus, which is mediated in part by the trophoblast, is critical to ensure embryonic survival and development. The postpartum mammary microenvironment also exhibits immunosuppressive mechanisms accompanying the massive cell death and tissue remodeling that occurs during mammary gland involution. These normal immunosuppressive mechanisms are paralleled during malignant transformation, where tumors can develop neoantigens that may be recognized as foreign by the immune system. To circumvent this, tumors can dedifferentiate and co-opt immune-suppressive mechanisms normally utilized during fetal tolerance and postpartum mammary involution. In this review, we discuss those similarities and how they can inform our understanding of cancer progression and metastasis.
Collapse
Affiliation(s)
- Lyndsey S Crump
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kelsey T Kines
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Young Women's Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jennifer K Richer
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- University of Colorado Cancer Center, Aurora, Colorado
| | - Traci R Lyons
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Young Women's Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- University of Colorado Cancer Center, Aurora, Colorado
| |
Collapse
|
6
|
Wei Y, Wang Z, Yang J, Xu R, Deng H, Ma S, Fang T, Zhang J, Shen Q. Reactive oxygen species / photothermal therapy dual-triggered biomimetic gold nanocages nanoplatform for combination cancer therapy via ferroptosis and tumor-associated macrophage repolarization mechanism. J Colloid Interface Sci 2022; 606:1950-1965. [PMID: 34695762 DOI: 10.1016/j.jcis.2021.09.160] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/06/2021] [Accepted: 09/26/2021] [Indexed: 12/12/2022]
Abstract
With the continuous development of cancer nanotechnology, an important trend in the research is to combine the broad application prospects of functional nanomaterials with recent biological discoveries and technological advances. Herein, a cancer cell membrane-camouflaged gold nanocage loading doxorubicin (DOX) and l-buthionine sulfoximine (BSO) (denoted as m@Au-D/B NCs) was constructed as an innovative nanoplatform to confer promising cancer combination therapy by evoking effective ferroptosis and immune responses. Briefly, the loading of BSO and DOX could induce ferroptosis through simultaneous effective glutathione (GSH) consumption and reactive oxygen species (ROS) accumulation. Gold nanocages (AuNCs) with distinct anti-tumor application performance was utilized as ideal nanocarrier for drug loading, evoking photothermal effects and photochemical catalysis to generate more ROS under near-infrared (NIR) irradiation. Moreover, m@Au-D/B NCs-mediated photothermal therapy (PTT) combined with ROS production could repolarize the tumor-associated macrophages (TAMs) from pro-tumor (M2) phenotype to anti-tumor (M1) phenotype, thus improving tumor-suppressive immune environment and then promoting the activation of effector cells and release of pro-inflammatory cytokines, in which the antitumor responses were evoked robustly in a methodical approach. The anti-tumor effects in vivo implied that m@Au-D/B NCs could significantly inhibit tumor growth without severe toxicity. Hence, this homotypic targeting nanosystem could offer an auspicious anticancer access by triggering combination cancer therapy via ferroptosis and tumor-associated macrophage repolarization mechanism.
Collapse
Affiliation(s)
- Yawen Wei
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhihua Wang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jie Yang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Rui Xu
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Huizi Deng
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Siyu Ma
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Tianxu Fang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jun Zhang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qi Shen
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
7
|
Malik V, Ramesh A, Kulkarni AA. TLR7/8 Agonist and SHP2 Inhibitor Loaded Nanoparticle Enhances Macrophage Immunotherapy Efficacy. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Vaishali Malik
- Department of Chemical Engineering University of Massachusetts Amherst MA 01003 USA
- Molecular and Cellular Biology Program University of Massachusetts Amherst MA 01003 USA
| | - Anujan Ramesh
- Department of Chemical Engineering University of Massachusetts Amherst MA 01003 USA
- Department of Biomedical Engineering University of Massachusetts Amherst MA 01003 USA
| | - Ashish A. Kulkarni
- Department of Chemical Engineering University of Massachusetts Amherst MA 01003 USA
- Department of Biomedical Engineering University of Massachusetts Amherst MA 01003 USA
- Molecular and Cellular Biology Program University of Massachusetts Amherst MA 01003 USA
- Center for Bioactive Delivery Institute for Applied Life Sciences University of Massachusetts Amherst MA 01003 USA
| |
Collapse
|
8
|
Muñoz-Montaño WR, Cabrera-Galeana P, De la Garza-Ramos C, Azim HA, Tabares A, Perez V, Porras Reyes F, Sanchez Benitez D, Alvarado-Miranda A, Lara-Medina F, Vazquez Romo R, Bargallo-Rocha E, Arrieta O, Villarreal-Garza C. Prognosis of breast cancer diagnosed during pregnancy and early postpartum according to immunohistochemical subtype: A matched case-control study. Breast Cancer Res Treat 2021; 188:489-500. [PMID: 34132938 DOI: 10.1007/s10549-021-06225-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/08/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE Pregnancy-associated breast cancer (PABC) poses a clinical challenge and its prognosis remains controversial. During the pregnancy and postpartum periods, the breast undergoes biological events that may uniquely influence disease behavior and treatment response. This study aimed to assess if a PABC diagnosis influences survival compared to non-PABC. METHODS A single-center record review was performed to identify PABC patients diagnosed from January 2007 through June 2018. Two controls were matched to each PABC case by stage, immunohistochemical (IHC) subtype, age (± 3) and year of diagnosis (± 2). Disease-free survival (DFS) and overall survival (OS) were estimated with the Kaplan-Meier method and compared with the log-rank test. Multivariate analysis was used to assess the impact of PABC on outcomes. RESULTS 125 PABC patients (pregnant: 62; postpartum: 63) and 250 controls were included. Median follow-up was 67.7 and 73.4 months, respectively. 4-year DFS was 62% in pregnant vs 78% in controls (p = 0.010), and 63% in postpartum vs 83% in controls (p = 0.034). Subanalysis by IHC subtype revealed a significantly inferior DFS in PABC with hormone receptor-positive/HER2-negative (p = 0.032) and HER2-positive disease (p = 0.005) compared to corresponding non-PABC patients. 4-year OS was similar between case groups and controls. Multivariate analysis supported the independent impact of pregnant and postpartum status on DFS (p < 0.05). CONCLUSION Patients diagnosed during pregnancy and early postpartum are at high risk of recurrence. Further research is warranted to better characterize PABC tumor biology and enable the identification of novel therapeutic interventions to improve treatment outcomes.
Collapse
Affiliation(s)
- Wendy R Muñoz-Montaño
- Breast Medical Oncology, National Institute of Cancer, San Fernando #22, Section XVI, 14080, Tlalpan, Mexico City, Mexico
| | - Paula Cabrera-Galeana
- Breast Medical Oncology, National Institute of Cancer, San Fernando #22, Section XVI, 14080, Tlalpan, Mexico City, Mexico
| | - Cynthia De la Garza-Ramos
- Breast Cancer Center, Hospital Zambrano Hellion, Tecnologico de Monterrey, Av. Batallon de San Patricio 112, 66278, Real San Agustin, San Pedro Garza Garcia, NL, Mexico
| | - Hatem A Azim
- Breast Cancer Center, Hospital Zambrano Hellion, Tecnologico de Monterrey, Av. Batallon de San Patricio 112, 66278, Real San Agustin, San Pedro Garza Garcia, NL, Mexico
| | - Ariana Tabares
- Breast Medical Oncology, National Institute of Cancer, San Fernando #22, Section XVI, 14080, Tlalpan, Mexico City, Mexico
| | - Victor Perez
- Oncological Pathology of Mammary Tumors Unit, National Institute of Cancer, San Fernando #22, Section XVI, 14080, Tlalpan, Mexico City, Mexico
| | - Fanny Porras Reyes
- Oncological Pathology of Mammary Tumors Unit, National Institute of Cancer, San Fernando #22, Section XVI, 14080, Tlalpan, Mexico City, Mexico
| | | | - Alberto Alvarado-Miranda
- Breast Medical Oncology, National Institute of Cancer, San Fernando #22, Section XVI, 14080, Tlalpan, Mexico City, Mexico
| | - Fernando Lara-Medina
- Breast Medical Oncology, National Institute of Cancer, San Fernando #22, Section XVI, 14080, Tlalpan, Mexico City, Mexico
| | - Rafael Vazquez Romo
- Breast Surgical Oncology, National Institute of Cancer, San Fernando #22, Section XVI, 14080, Tlalpan, Mexico City, Mexico
| | - Enrique Bargallo-Rocha
- Breast Surgical Oncology, National Institute of Cancer, San Fernando #22, Section XVI, 14080, Tlalpan, Mexico City, Mexico
| | - Oscar Arrieta
- Research Unit, National Institute of Cancer, San Fernando #22, Section XVI, 14080, Tlalpan, Mexico City, Mexico. .,Head of Thoracic Oncology Unit and Laboratory of Personalized Medicine, National Institute of Cancer, San Fernando #22, Section XVI, 14080, Tlalpan, Mexico City, Mexico.
| | - Cynthia Villarreal-Garza
- Breast Cancer Center, Hospital Zambrano Hellion, Tecnologico de Monterrey, Av. Batallon de San Patricio 112, 66278, Real San Agustin, San Pedro Garza Garcia, NL, Mexico.
| |
Collapse
|
9
|
Lefrère H, Lenaerts L, Borges VF, Schedin P, Neven P, Amant F. Postpartum breast cancer: mechanisms underlying its worse prognosis, treatment implications, and fertility preservation. Int J Gynecol Cancer 2021; 31:412-422. [PMID: 33649008 PMCID: PMC7925817 DOI: 10.1136/ijgc-2020-002072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022] Open
Abstract
Breast cancers that occur in young women up to 5 to 10 years' postpartum are associated with an increased risk for metastasis and death compared with breast cancers diagnosed in young, premenopausal women during or outside pregnancy. Given the trend to delay childbearing, this frequency is expected to increase. The (immuno)biology of postpartum breast cancer is poorly understood and, hence, it is unknown why postpartum breast cancer has an enhanced risk for metastasis or how it should be effectively targeted for improved survival. The poorer prognosis of women diagnosed within 10 years of a completed pregnancy is most often contributed to the effects of mammary gland involution. We will discuss the most recent data and mechanistic insights of the most important processes associated with involution and their role in the adverse effects of a postpartum diagnosis. We will also look into the effect of lactation on breast cancer outcome after diagnosis. In addition, we will discuss the available treatment strategies that are currently being used to treat postpartum breast cancer, keeping in mind the importance of fertility preservation in this group of young women. These additional insights might offer potential therapeutic options for the improved treatment of women with this specific condition.
Collapse
Affiliation(s)
- Hanne Lefrère
- Department of Oncology, KU Leuven University Hospitals Leuven Gasthuisberg Campus, Leuven, Flanders, Belgium.,Department of Gynecology, AVL NKI, Amsterdam, Noord-Holland, The Netherlands
| | - Liesbeth Lenaerts
- Department of Oncology, KU Leuven University Hospitals Leuven Gasthuisberg Campus, Leuven, Flanders, Belgium
| | - Virginia F Borges
- Department of Medicine, University of Colorado - Anschutz Medical Campus, Aurora, Colorado, USA.,Young Women's Breast Cancer Translational Program, University of Colorado Cancer Center, Aurora, Colorado, USA
| | - Pepper Schedin
- Young Women's Breast Cancer Translational Program, University of Colorado Cancer Center, Aurora, Colorado, USA.,Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon, USA.,Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Patrick Neven
- Department of Oncology, KU Leuven University Hospitals Leuven Gasthuisberg Campus, Leuven, Flanders, Belgium.,Department of Gynecology and Obstetrics, Katholieke Universiteit Leuven UZ Leuven, Leuven, Flanders, Belgium.,Multidisciplinary Breast Centre, UZ-KU Leuven Cancer Institute (LKI), Katholieke Universiteit Leuven UZ Leuven, Leuven, Flanders, Belgium
| | - Frédéric Amant
- Department of Oncology, KU Leuven University Hospitals Leuven Gasthuisberg Campus, Leuven, Flanders, Belgium .,Department of Gynecology, AVL NKI, Amsterdam, Noord-Holland, The Netherlands.,Department of Gynecology and Obstetrics, Katholieke Universiteit Leuven UZ Leuven, Leuven, Flanders, Belgium.,Department of Gynecological Oncology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Allouch S, Gupta I, Malik S, Al Farsi HF, Vranic S, Al Moustafa AE. Breast Cancer During Pregnancy: A Marked Propensity to Triple-Negative Phenotype. Front Oncol 2021; 10:580345. [PMID: 33425733 PMCID: PMC7786283 DOI: 10.3389/fonc.2020.580345] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 11/20/2020] [Indexed: 12/19/2022] Open
Abstract
Breast and cervical cancers comprise 50% of all cancers during pregnancy. In particular, gestational breast cancer is considered one of the most aggressive types of cancers, which is a rare but fatal disease. However, the incidence of this type of cancer is increasing over the years and its prevalence is expected to rise further as more women delay childbearing. Breast cancer occurring after pregnancy is generally triple negative with specific characterizations of a poorer prognosis and outcome. On the other hand, it has been pointed out that this cancer is associated with a specific group of genes which can be used as precise targets to manage this deadly disease. Indeed, combination therapies consisting of gene-based agents with other cancer therapeutics is presently under consideration. We herein review recent progress in understanding the development of breast cancer during pregnancy and their unique subtype of triple negative which is the hallmark of this type of breast cancer.
Collapse
Affiliation(s)
- Soumaya Allouch
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ishita Gupta
- College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical Research Center, Qatar University, Doha, Qatar
| | - Shaza Malik
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | | | - Semir Vranic
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ala-Eddin Al Moustafa
- College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical Research Center, Qatar University, Doha, Qatar
| |
Collapse
|
11
|
Borges VF, Lyons TR, Germain D, Schedin P. Postpartum Involution and Cancer: An Opportunity for Targeted Breast Cancer Prevention and Treatments? Cancer Res 2020; 80:1790-1798. [PMID: 32075799 PMCID: PMC8285071 DOI: 10.1158/0008-5472.can-19-3448] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/24/2020] [Accepted: 02/12/2020] [Indexed: 12/24/2022]
Abstract
Childbirth at any age confers a transient increased risk for breast cancer in the first decade postpartum and this window of adverse effect extends over two decades in women with late-age first childbirth (>35 years of age). Crossover to the protective effect of pregnancy is dependent on age at first pregnancy, with young mothers receiving the most benefit. Furthermore, breast cancer diagnosis during the 5- to 10-year postpartum window associates with high risk for subsequent metastatic disease. Notably, lactation has been shown to be protective against breast cancer incidence overall, with varying degrees of protection by race, multiparity, and lifetime duration of lactation. An effect for lactation on breast cancer outcome after diagnosis has not been described. We discuss the most recent data and mechanistic insights underlying these epidemiologic findings. Postpartum involution of the breast has been identified as a key mediator of the increased risk for metastasis in women diagnosed within 5-10 years of a completed pregnancy. During breast involution, immune avoidance, increased lymphatic network, extracellular matrix remodeling, and increased seeding to the liver and lymph node work as interconnected pathways, leading to the adverse effect of a postpartum diagnosis. We al discuss a novel mechanism underlying the protective effect of breastfeeding. Collectively, these mechanistic insights offer potential therapeutic avenues for the prevention and/or improved treatment of postpartum breast cancer.
Collapse
Affiliation(s)
- Virginia F Borges
- Young Women's Breast Cancer Translational Program, University of Colorado Cancer Center, Aurora, Colorado.
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Traci R Lyons
- Young Women's Breast Cancer Translational Program, University of Colorado Cancer Center, Aurora, Colorado
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Doris Germain
- Tisch Cancer Institute, Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Pepper Schedin
- Young Women's Breast Cancer Translational Program, University of Colorado Cancer Center, Aurora, Colorado.
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
12
|
Ramesh A, Kumar S, Nandi D, Kulkarni A. CSF1R- and SHP2-Inhibitor-Loaded Nanoparticles Enhance Cytotoxic Activity and Phagocytosis in Tumor-Associated Macrophages. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1904364. [PMID: 31659802 DOI: 10.1002/adma.201904364] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/03/2019] [Indexed: 05/06/2023]
Abstract
Immune modulation of macrophages has emerged as an attractive approach for anti-cancer therapy. However, there are two main challenges in successfully utilizing macrophages for immunotherapy. First, macrophage colony stimulating factor (MCSF) secreted by cancer cells binds to colony stimulating factor 1 receptor (CSF1-R) on macrophages and in turn activates the downstream signaling pathway responsible for polarization of tumor-associated macrophages (TAMs) to immunosuppressive M2 phenotype. Second, ligation of signal regulatory protein α (SIRPα) expressed on myeloid cells to CD47, a transmembrane protein overexpressed on cancer cells, activates the Src homology region 2 (SH2) domain -phosphatases SHP-1 and SHP-2 in macrophages. This results in activation of "eat-me-not" signaling pathway and inhibition of phagocytosis. Here, it is reported that self-assembled dual-inhibitor-loaded nanoparticles (DNTs) target M2 macrophages and simultaneously inhibit CSF1R and SHP2 pathways. This results in efficient repolarization of M2 macrophages to an active M1 phenotype, and superior phagocytic capabilities as compared to individual drug treatments. Furthermore, suboptimal dose administration of DNTs in highly aggressive breast cancer and melanoma mouse models show enhanced anti-tumor efficacy without any toxicity. These studies demonstrate that the concurrent inhibition of CSF1-R and SHP2 signaling pathways for macrophage activation and phagocytosis enhancement could be an effective strategy for macrophage-based immunotherapy.
Collapse
Affiliation(s)
- Anujan Ramesh
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, 01003-9364, USA
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, 01003-9364, USA
| | - Sahana Kumar
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, 01003-9364, USA
| | - Dipika Nandi
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003-9364, USA
| | - Ashish Kulkarni
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, 01003-9364, USA
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, 01003-9364, USA
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003-9364, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, 01003-9364, USA
| |
Collapse
|
13
|
Wallace TR, Tarullo SE, Crump LS, Lyons TR. Studies of postpartum mammary gland involution reveal novel pro-metastatic mechanisms. ACTA ACUST UNITED AC 2019; 5. [PMID: 30847405 PMCID: PMC6400586 DOI: 10.20517/2394-4722.2019.01] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Postpartum involution is the process by which the lactating mammary gland returns to the pre-pregnant state after weaning. Expression of tumor-promotional collagen, upregulation of matrix metalloproteinases, infiltration of M2 macrophages, and remodeling of blood and lymphatic vasculature are all characteristics shared by the involuting mammary gland and breast tumor microenvironment. The tumor promotional nature of the involuting mammary gland is perhaps best evidenced by cases of postpartum breast cancer (PPBC), or those cases diagnosed within 10 years of most recent childbirth. Women with PPBC experience more aggressive disease and higher risk of metastasis than nulliparous patients and those diagnosed outside the postpartum window. Semaphorin 7a (SEMA7A), cyclooxygenase-2 (COX-2), and collagen are all expressed in the involuting mammary gland and, together, predict for decreased metastasis free survival in breast cancer. Studies investigating the role of these proteins in involution have been important for understanding their contributions to PPBC. Postpartum involution thus represents a valuable model for the identification of novel molecular drivers of PPBC and classical cancer hallmarks. In this review, we will highlight the similarities between involution and cancer in the mammary gland, and further define the contribution of SEMA7A/COX-2/collagen interplay to postpartum involution and breast tumor progression and metastasis.
Collapse
Affiliation(s)
- Taylor R Wallace
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.,Young Women's Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sarah E Tarullo
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.,Young Women's Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lyndsey S Crump
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.,Young Women's Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Traci R Lyons
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.,Young Women's Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.,University of Colorado Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
14
|
Gronowicz G, Secor ER, Flynn JR, Kuhn LT. Human biofield therapy does not affect tumor size but modulates immune responses in a mouse model for breast cancer. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2018; 14:389-99. [PMID: 27641610 DOI: 10.1016/s2095-4964(16)60275-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To assess the effect of human biofield therapy, an integrative medicine modality, on the development of tumors and metastasis, and immune function in a mouse breast cancer model. METHODS Mice were injected with 66cl4 mammary carcinoma cells. In study one, mice received biofield therapy after cell injection. In study two, mice were treated by the biofield practitioner only prior to cell injection. Both studies had two control groups of mock biofield treatments and phosphate-buffered saline injection. Mice were weighed and tumor volume was determined. Blood samples were collected and 32 serum cytokine/chemokine markers were measured. Spleens/popliteal lymph nodes were isolated and dissociated for fluorescent-activated cell sorting (FACS) analysis of immune cells or metastasis assays in cell culture. RESULTS No significant differences were found in weight, tumor size or metastasis. Significant effects were found in the immune responses in study one but no additional effects were found in study two. In study one, human biofield treatment significantly reduced percentage of CD4(+)CD44loCD25(+) and percentage of CD8(+) cells, elevated by cancer in the lymph nodes, to control levels determined by FACS analysis. In the spleen, only CD11b(+) macrophages were increased with cancer, and human biofield therapy significantly reduced them. Of 11 cytokines elevated by cancer, only interferon-γ, interleukin-1, monokine induced by interfer-γ, interleukin-2 and macrophage inflammatory protein-2 were significantly reduced to control levels with human biofield therapy. CONCLUSION Human biofield therapy had no significant effect on tumor size or metastasis but produced significant effects on immune responses apparent in the down-regulation of specific lymphocytes and serum cytokines in a mouse breast cancer model.
Collapse
Affiliation(s)
- Gloria Gronowicz
- Department of Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Eric R Secor
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030, USA.,Hartford Healthcare, Hartford Hospital, Hartford, CT 06102-5037, USA
| | - John R Flynn
- Department of Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Liisa T Kuhn
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
15
|
Byun JS, Park S, Caban A, Jones A, Gardner K. Linking Race, Cancer Outcomes, and Tissue Repair. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:317-328. [PMID: 29137950 PMCID: PMC5785534 DOI: 10.1016/j.ajpath.2017.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/02/2017] [Accepted: 10/05/2017] [Indexed: 02/07/2023]
Abstract
The burden of cancer in the United States is unevenly spread across its different populations, with stark differences in both disease prevalence and outcome on the basis of race and ethnicity. Although a large portion of these differences can be explained by a variety of sociobehavioral and socioeconomic factors, even after these exposures are taken into consideration, considerable disparities persist. In this review, we explore a conceptual framework of biological theories and unifying concepts, based on an evolutionary perspective, that may help better define common guiding principles for exploration of underlying causes of cancer health disparities. The ultimate goal of this conceptual perspective is to outline approaches that may aid in establishing integrated pathway and processes analyses to provide useful insights to guide the development of future interventions. These interventions will improve outcome, increase prevention, and ultimately eliminate all disparities.
Collapse
Affiliation(s)
- Jung S Byun
- National Institute on Minority Health and Health Disparities, Bethesda, Maryland
| | - Samson Park
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Ambar Caban
- National Institute on Minority Health and Health Disparities, Bethesda, Maryland
| | - Alana Jones
- National Institute on Minority Health and Health Disparities, Bethesda, Maryland
| | - Kevin Gardner
- National Institute on Minority Health and Health Disparities, Bethesda, Maryland; Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|
16
|
ElShamy WM. The protective effect of longer duration of breastfeeding against pregnancy-associated triple negative breast cancer. Oncotarget 2018; 7:53941-53950. [PMID: 27248476 PMCID: PMC5288234 DOI: 10.18632/oncotarget.9690] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 05/23/2016] [Indexed: 12/24/2022] Open
Abstract
Parity associated breast cancer (PABC) often diagnosed within the 2-5 years after a full term pregnancy. PABC is usually present with more advanced, poorly differentiated, high-grade cancers that show shorter time to progression and often of the triple negative breast cancer (TNBC) subtype. Data from around the world show that pregnancy-associated TNBC is independently associated with poor survival, underscoring the impact of the pregnant breast microenvironment on the biology and consequently the prognosis of these tumors. Although it is not yet clear, a link between pregnancy-associated TNBCs and lack or shorter duration of breastfeeding (not pregnancy per se) has been proposed. Here, we present epidemiological and experimental evidence for the protective effect of longer duration of lactation against pregnancy-associated TNBCs, and propose a putative molecular mechanism for this protective effect and its effect in eliminating any potential TNBC precursors from the breast by the end of the natural breast involution.
Collapse
Affiliation(s)
- Wael M ElShamy
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
17
|
Li Y, Pang Z, Dong X, Liao X, Deng H, Liao C, Liao Y, Chen G, Huang L. MUC1 induces M2 type macrophage influx during postpartum mammary gland involution and triggers breast cancer. Oncotarget 2017; 9:3446-3458. [PMID: 29423058 PMCID: PMC5790475 DOI: 10.18632/oncotarget.23316] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/19/2017] [Indexed: 01/28/2023] Open
Abstract
The microenvironment of postpartum mammary gland involution (PMI) has been linked to the increased risk of breast cancer and poor outcome of patients. Nevertheless the mechanism underlying regulates the microenvironment remains largely unknown. MUC1, which is abnormally overexpressed in most breast cancer, is physiologically expressed in PMI. Using MUC1 cytoplasm domain (MUC1-CD) transgenic mice, we reveal that the overexpression of MUC1-CD in mammary epithelial cells increases M2 type macrophage infiltration in PMI. By sustain activating p50, MUC1 upregulates M2 macrophage chemo-attractants and the anti-apoptotic protein Bcl-xL. Because of the tumor promotional microenvironments and reduced apoptosis, MUC1-CD delays PMI process and results in atypical phenotype in multiparous mice mammary. This finding is further supported by the positive association between the expression of MUC1 and p50 in Luminal A and Luminal B subtypes through analyzing breast cancer databases. Taken together, our study demonstrates that MUC1-CD plays an important role in regulating microenvironment of PMI and promoting postpartum mammary tumorigenicity, providing novel prevention and treatment strategies against postpartum breast cancer.
Collapse
Affiliation(s)
- Yuan Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.,Department of Endocrinology, Huadong Hospital Affiliated to Fudan University, Shanghai, P.R. China
| | - Zhi Pang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Xinran Dong
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, P.R. China
| | - Xiaodong Liao
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.,Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Huayun Deng
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.,Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Chunhua Liao
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Yahui Liao
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Guoqiang Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Lei Huang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.,Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
18
|
Stallings-Mann ML, Heinzen EP, Vierkant RA, Winham SJ, Hoskin TL, Denison LA, Nassar A, Hartmann LC, Visscher DW, Frost MH, Sherman ME, Degnim AC, Radisky DC. Postlactational involution biomarkers plasminogen and phospho-STAT3 are linked with active age-related lobular involution. Breast Cancer Res Treat 2017; 166:133-143. [PMID: 28752190 PMCID: PMC5645446 DOI: 10.1007/s10549-017-4413-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/22/2017] [Indexed: 11/30/2022]
Abstract
Purpose Breast terminal duct lobular units undergo two distinctive physiological processes of involution: age-related lobular involution (LI), which is gradual and associated with decreased breast cancer risk, and postlactational involution, which is relatively precipitous, occurs with weaning, and has been associated with potentiation of tumor aggressiveness in animal models. Here we assessed whether markers of postlactational involution are associated with ongoing LI in a retrospective tissue cohort. Methods We selected 57 women from the Mayo Clinic Benign Breast Disease Cohort who underwent multiple biopsies and who were average age 48 at initial biopsy. Women were classified as having progressive or non-progressive LI between initial and subsequent biopsy. Serial tissue sections were immunostained for plasminogen, matrix metalloproteinase 9 (MMP-9), phospho-STAT3 (pSTAT3), tenascin C, Ki67, CD44, cytokeratin 14 (CK14), cytokeratin 19 (CK19), and c-myc. All but Ki67 were digitally quantified. Associations between maximal marker expression per sample and progressive versus non-progressive LI were assessed using logistic regression and adjusted for potential confounders. Results While no biomarker showed statistically significant association with LI progression when evaluated individually, lower expression of pSTAT3 (OR 0.35, 95% CI 0.13–0.82, p = 0.01) and higher expression of plasminogen (OR 2.89, 95% CI 1.14–8.81, p = 0.02) were associated with progressive LI in models simultaneously adjusted for all biomarkers. Sensitivity analyses indicated that the strengthening in association for pSTAT3 and plasminogen with progressive LI was due to collinearity between these two markers. Conclusions This is the first study to identify biomarkers of active LI. Our findings that plasminogen and pSTAT3 are significantly associated with LI suggest that they may represent signaling nodes or biomarkers of pathways common to the processes of postlactational involution and LI. Electronic supplementary material The online version of this article (doi:10.1007/s10549-017-4413-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Ethan P Heinzen
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Robert A Vierkant
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Stacey J Winham
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Tanya L Hoskin
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Lori A Denison
- Department of Information Technology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Aziza Nassar
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Lynn C Hartmann
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Daniel W Visscher
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Marlene H Frost
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Mark E Sherman
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Amy C Degnim
- Department of Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA.
| |
Collapse
|
19
|
Prognosis of pregnancy-associated breast cancer. Breast Cancer Res Treat 2017; 163:417-421. [DOI: 10.1007/s10549-017-4224-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 03/24/2017] [Indexed: 10/19/2022]
|
20
|
Borges VF, Elder AM, Lyons TR. Deciphering Pro-Lymphangiogenic Programs during Mammary Involution and Postpartum Breast Cancer. Front Oncol 2016; 6:227. [PMID: 27853703 PMCID: PMC5090124 DOI: 10.3389/fonc.2016.00227] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/10/2016] [Indexed: 12/12/2022] Open
Abstract
Postpartum breast cancers are a highly metastatic subset of young women’s breast cancers defined as breast cancers diagnosed in the postpartum period or within 5 years of last child birth. Women diagnosed with postpartum breast cancer are nearly twice as likely to develop metastasis and to die from breast cancer when compared with nulliparous women. Additionally, epidemiological studies utilizing multiple cohorts also suggest that nearly half of all breast cancers in women aged <45 qualify as postpartum cases. Understanding the biology that underlies this increased risk for metastasis and death may lead to identification of targeted interventions that will benefit the large number of young women with breast cancer who fall into this subset. Preclinical mouse models of postpartum breast cancer have revealed that breast tumor cells become more aggressive if they are present during the normal physiologic process of postpartum mammary gland involution in mice. As involution appears to be a period of lymphatic growth and remodeling, and human postpartum breast cancers have high peritumor lymphatic vessel density (LVD) and increased incidence of lymph node metastasis (1, 2), we propose that novel insight into is to be gained through the study of the biological mechanisms driving normal postpartum mammary lymphangiogenesis as well as in the microenvironment of postpartum tumors.
Collapse
Affiliation(s)
- Virginia F Borges
- Young Women's Breast Cancer Translational Program, University of Colorado Cancer Center, Aurora, CO, USA; Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alan M Elder
- Young Women's Breast Cancer Translational Program, University of Colorado Cancer Center, Aurora, CO, USA; Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Traci R Lyons
- Young Women's Breast Cancer Translational Program, University of Colorado Cancer Center, Aurora, CO, USA; Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
21
|
Affiliation(s)
- David B Vaught
- Department of Cancer Biology, Vanderbilt University, Nashville, TN USA
| | - Rebecca S Cook
- Department of Cancer Biology, Vanderbilt University, Nashville, TN USA.,Vanderbilt Ingram Cancer Center, Nashville, TN USA
| |
Collapse
|
22
|
Asztalos S, Pham TN, Gann PH, Hayes MK, Deaton R, Wiley EL, Emmadi R, Kajdacsy-Balla A, Banerji N, McDonald W, Khan SA, Tonetti DA. High incidence of triple negative breast cancers following pregnancy and an associated gene expression signature. SPRINGERPLUS 2015; 4:710. [PMID: 26618099 PMCID: PMC4653130 DOI: 10.1186/s40064-015-1512-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 11/04/2015] [Indexed: 12/31/2022]
Abstract
Breast cancer risk increases transiently in the period following pregnancy; pregnancy-associated breast cancers (PABC) are more aggressive than cases diagnosed in nulliparous women. We have previously reported that in the normal human breast pregnancy results in the upregulation of a number of inflammation related genes, suggesting a pro-tumorigenic environment as well as downregulation of ESR1 (ERα) and ERBB2 (HER2) and upregulation of ESR2 (ERβ), suggesting a protective effect. In this study, we aimed to investigate the possibility of differential regulation of the same gene set modulated in the normal breast, in human breast tumors following pregnancy. Gene expression was measured by real-time PCR on tumor regions isolated by laser capture microdissection from paraffin sections. Immunohistochemistry was performed on tissue microarrays (TMA) for protein expression. Hierarchical clustering was performed using the average linkage method to determine coordinate expression of sets of genes. We find that breast cancers detected within 10 years following pregnancy display a different gene expression pattern than those detected in nulliparous breast cancer patients. The gene expression difference is mainly attributable to a triple negative (TNBC) subgroup found to be more frequent in PABCs up to 10 years following a pregnancy. We also show that protein and mRNA expression levels correlate in half of the proteins tested by TMA. Despite the fact that this is a small study of 53 patients, we identified a gene expression signature that is differentially expressed in pregnancy-associated TNBC.
Collapse
Affiliation(s)
- Szilard Asztalos
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL USA
| | - Thao N Pham
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL USA
| | - Peter H Gann
- Department of Pathology, University of Illinois at Chicago, Chicago, IL USA
| | - Meghan K Hayes
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL USA
| | - Ryan Deaton
- Department of Pathology, University of Illinois at Chicago, Chicago, IL USA
| | - Elizabeth L Wiley
- Department of Pathology, University of Illinois at Chicago, Chicago, IL USA
| | - Rajyasree Emmadi
- Department of Pathology, University of Illinois at Chicago, Chicago, IL USA
| | | | | | | | - Seema A Khan
- Department of Surgery, Northwestern Feinberg School of Medicine, Chicago, IL USA
| | - Debra A Tonetti
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL USA
| |
Collapse
|
23
|
Paquette SG, Banner D, Huang SSH, Almansa R, Leon A, Xu L, Bartoszko J, Kelvin DJ, Kelvin AA. Influenza Transmission in the Mother-Infant Dyad Leads to Severe Disease, Mammary Gland Infection, and Pathogenesis by Regulating Host Responses. PLoS Pathog 2015; 11:e1005173. [PMID: 26448646 PMCID: PMC4598190 DOI: 10.1371/journal.ppat.1005173] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/28/2015] [Indexed: 02/05/2023] Open
Abstract
Seasonal influenza viruses are typically restricted to the human upper respiratory tract whereas influenza viruses with greater pathogenic potential often also target extra-pulmonary organs. Infants, pregnant women, and breastfeeding mothers are highly susceptible to severe respiratory disease following influenza virus infection but the mechanisms of disease severity in the mother-infant dyad are poorly understood. Here we investigated 2009 H1N1 influenza virus infection and transmission in breastfeeding mothers and infants utilizing our developed infant-mother ferret influenza model. Infants acquired severe disease and mortality following infection. Transmission of the virus from infants to mother ferrets led to infection in the lungs and mother mortality. Live virus was also found in mammary gland tissue and expressed milk of the mothers which eventually led to milk cessation. Histopathology showed destruction of acini glandular architecture with the absence of milk. The virus was localized in mammary epithelial cells of positive glands. To understand the molecular mechanisms of mammary gland infection, we performed global transcript analysis which showed downregulation of milk production genes such as Prolactin and increased breast involution pathways indicated by a STAT5 to STAT3 signaling shift. Genes associated with cancer development were also significantly increased including JUN, FOS and M2 macrophage markers. Immune responses within the mammary gland were characterized by decreased lymphocyte-associated genes CD3e, IL2Ra, CD4 with IL1β upregulation. Direct inoculation of H1N1 into the mammary gland led to infant respiratory infection and infant mortality suggesting the influenza virus was able to replicate in mammary tissue and transmission is possible through breastfeeding. In vitro infection studies with human breast cells showed susceptibility to H1N1 virus infection. Together, we have shown that the host-pathogen interactions of influenza virus infection in the mother-infant dyad initiate immunological and oncogenic signaling cascades within the mammary gland. These findings suggest the mammary gland may have a greater role in infection and immunity than previously thought.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Animals, Suckling/virology
- Blotting, Western
- Cell Line
- Disease Models, Animal
- Female
- Ferrets
- Host-Parasite Interactions/physiology
- Humans
- Immunohistochemistry
- Influenza A Virus, H1N1 Subtype
- Influenza, Human/virology
- Lactation
- Mammary Glands, Animal/pathology
- Mammary Glands, Animal/virology
- Mammary Glands, Human/virology
- Microscopy, Confocal
- Milk/virology
- Mothers
- Oligonucleotide Array Sequence Analysis
- Orthomyxoviridae Infections/pathology
- Orthomyxoviridae Infections/transmission
- Pregnancy
- Real-Time Polymerase Chain Reaction
- Transcriptome
Collapse
Affiliation(s)
- Stéphane G. Paquette
- Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - David Banner
- Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Stephen S. H. Huang
- Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Raquel Almansa
- Infection and Immunity Medical Investigation Unit, Hospital Clínico Universitario—Instituto de Estudios de Ciencias de la Salud de Castilla y Leόn, Valladolid, Spain
| | - Alberto Leon
- Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Luoling Xu
- Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Jessica Bartoszko
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - David J. Kelvin
- Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Sezione di Microbiologia Sperimentale e Clinica, Dipartimento di Scienze Biomediche, Universita' degli Studi di Sassari, Sassari, Italy
- International Institute of Infection and Immunity, Shantou University Medical College, Shantou, Guangdong, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Guangdong, China
| | - Alyson A. Kelvin
- Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Immune Diagnostics & Research, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Therapeutic Touch Has Significant Effects on Mouse Breast Cancer Metastasis and Immune Responses but Not Primary Tumor Size. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:926565. [PMID: 26113869 PMCID: PMC4465772 DOI: 10.1155/2015/926565] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/04/2015] [Indexed: 01/05/2023]
Abstract
Evidence-based integrative medicine therapies have been introduced to promote wellness and offset side-effects from cancer treatment. Energy medicine is an integrative medicine technique using the human biofield to promote well-being. The biofield therapy chosen for study was Therapeutic Touch (TT). Breast cancer tumors were initiated in mice by injection of metastatic 66cl4 mammary carcinoma cells. The control group received only vehicle. TT or mock treatments were performed twice a week for 10 minutes. Two experienced TT practitioners alternated treatments. At 26 days, metastasis to popliteal lymph nodes was determined by clonogenic assay. Changes in immune function were measured by analysis of serum cytokines and by fluorescent activated cells sorting (FACS) of immune cells from the spleen and lymph nodes. No significant differences were found in body weight gain or tumor size. Metastasis was significantly reduced in the TT-treated mice compared to mock-treated mice. Cancer significantly elevated eleven cytokines. TT significantly reduced IL-1-a, MIG, IL-1b, and MIP-2 to control/vehicle levels. FACS demonstrated that TT significantly reduced specific splenic lymphocyte subsets and macrophages were significantly elevated with cancer. Human biofield therapy had no significant effect on primary tumor but produced significant effects on metastasis and immune responses in a mouse breast cancer model.
Collapse
|
25
|
Hicks MJ, Hu Q, Macrae E, DeWille J. Mitogen-activated protein kinase signaling controls basal and oncostatin M-mediated JUNB gene expression. Mol Cell Biochem 2015; 403:115-24. [PMID: 25662951 DOI: 10.1007/s11010-015-2342-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 01/30/2015] [Indexed: 12/22/2022]
Abstract
The mitogen-activated protein kinase (MAPK) pathway is aberrantly activated in many human cancers, including breast cancer. Activation of MAPK signaling is associated with the increased expression of a wide range of genes that promote cell survival, proliferation, and migration. This report investigated the influence of MAPK signaling on the regulation and expression of JUNB in human breast cancer cell lines. JUNB has been associated with tumor suppressor and oncogenic functions, with most reports describing JUNB as an oncogene in breast cancer. Our results indicated that JUNB expression is elevated in MCF10A(met), SKBR3, and MDA-MB-231 human breast cancer cell lines compared to nontransformed MCF10A mammary epithelial cells. Increased RAS/MAPK signaling in MCF10A(met) cells correlates with the increased association of RNA polymerase II (Pol II) phosphorylated on serine 5 (Pol IIser5p) with the JUNB proximal promoter. Pol IIser5p is the "transcription initiating" form of Pol II. Treatment with U0126, a MAPK pathway inhibitor, reduces Pol IIser5p association with the JUNB proximal promoter and reduces JUNB expression. Oncostatin M (OSM) enhances MAPK and STAT3 signaling and significantly induces JUNB expression. U0126 treatment reduces OSM-induced Pol IIser5p binding to the JUNB proximal promoter and JUNB expression, but does not reduce pSTAT3 levels or the association of pSTAT3 with the JUNB proximal promoter. These results demonstrate that the MAPK pathway plays a primary role in the control of JUNB gene expression by promoting the association of Pol IIser5p with the JUNB proximal promoter.
Collapse
Affiliation(s)
- Mellissa J Hicks
- Department of Veterinary Biosciences, College of Veterinary Medicine, Ohio State University, Columbus, OH, 43210, USA
| | | | | | | |
Collapse
|
26
|
Stanford JC, Young C, Hicks D, Owens P, Williams A, Vaught DB, Morrison MM, Lim J, Williams M, Brantley-Sieders DM, Balko JM, Tonetti D, Earp HS, Cook RS. Efferocytosis produces a prometastatic landscape during postpartum mammary gland involution. J Clin Invest 2014; 124:4737-52. [PMID: 25250573 DOI: 10.1172/jci76375] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 08/13/2014] [Indexed: 12/27/2022] Open
Abstract
Breast cancers that occur in women 2-5 years postpartum are more frequently diagnosed at metastatic stages and correlate with poorer outcomes compared with breast cancers diagnosed in young, premenopausal women. The molecular mechanisms underlying the malignant severity associated with postpartum breast cancers (ppBCs) are unclear but relate to stromal wound-healing events during postpartum involution, a dynamic process characterized by widespread cell death in milk-producing mammary epithelial cells (MECs). Using both spontaneous and allografted mammary tumors in fully immune-competent mice, we discovered that postpartum involution increases mammary tumor metastasis. Cell death was widespread, not only occurring in MECs but also in tumor epithelium. Dying tumor cells were cleared through receptor tyrosine kinase MerTK-dependent efferocytosis, which robustly induced the transcription of genes encoding wound-healing cytokines, including IL-4, IL-10, IL-13, and TGF-β. Animals lacking MerTK and animals treated with a MerTK inhibitor exhibited impaired efferocytosis in postpartum tumors, a reduction of M2-like macrophages but no change in total macrophage levels, decreased TGF-β expression, and a reduction of postpartum tumor metastasis that was similar to the metastasis frequencies observed in nulliparous mice. Moreover, TGF-β blockade reduced postpartum tumor metastasis. These data suggest that widespread cell death during postpartum involution triggers efferocytosis-induced wound-healing cytokines in the tumor microenvironment that promote metastatic tumor progression.
Collapse
|
27
|
Unsworth A, Anderson R, Britt K. Stromal fibroblasts and the immune microenvironment: partners in mammary gland biology and pathology? J Mammary Gland Biol Neoplasia 2014; 19:169-82. [PMID: 24984900 DOI: 10.1007/s10911-014-9326-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 06/25/2014] [Indexed: 12/13/2022] Open
Abstract
The microenvironment of a tumor has emerged recently as a critical contributor to the development of cancer. Within this environment, fibroblasts and immune cells are the cell lineages that seem to be active mediators of tumour development. The activated fibroblasts that are also present during wound healing and chronic inflammation have been studied extensively. Their activation leads to altered gene expression profiles that markedly increase growth factor and cytokine secretion, leading to major alterations in the immune cell microenvironment. To better understand normal tissue development, wound healing and the chronic inflammation that leads to cancer, we review here information available on the role of fibroblasts and immune cells in normal breast development and in cancer. We also discuss the immunogenicity of breast cancer compared to other cancers and the contribution of the immune microenvironment to the initiation, progression and metastasis of tumors. Also reviewed is the limited knowledge on the role of immune cells and fibroblasts in normal development and whether the risk of cancer increases when their control is not tightly regulated.
Collapse
Affiliation(s)
- Ashleigh Unsworth
- Peter MacCallum Cancer Centre, 7 St Andrews Place East, Melbourne, 3002, Australia
| | | | | |
Collapse
|
28
|
Fornetti J, Martinson HA, Betts CB, Lyons TR, Jindal S, Guo Q, Coussens LM, Borges VF, Schedin P. Mammary gland involution as an immunotherapeutic target for postpartum breast cancer. J Mammary Gland Biol Neoplasia 2014; 19:213-28. [PMID: 24952477 PMCID: PMC4363120 DOI: 10.1007/s10911-014-9322-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 06/09/2014] [Indexed: 12/24/2022] Open
Abstract
Postpartum mammary gland involution has been identified as tumor-promotional and is proposed to contribute to the increased rates of metastasis and poor survival observed in postpartum breast cancer patients. In rodent models, the involuting mammary gland microenvironment is sufficient to induce enhanced tumor cell growth, local invasion, and metastasis. Postpartum involution shares many attributes with wound healing, including upregulation of genes involved in immune responsiveness and infiltration of tissue by immune cells. In rodent models, treatment with non-steroidal anti-inflammatory drugs (NSAIDs) ameliorates the tumor-promotional effects of involution, consistent with the immune milieu of the involuting gland contributing to tumor promotion. Currently, immunotherapy is being investigated as a means of breast cancer treatment with the purpose of identifying ways to enhance anti-tumor immune responses. Here we review evidence for postpartum mammary gland involution being a uniquely defined 'hot-spot' of pro-tumorigenic immune cell infiltration, and propose that immunotherapy should be explored for prevention and treatment of breast cancers that arise in this environment.
Collapse
Affiliation(s)
- Jaime Fornetti
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO 80045, USA
- Young Women’s Breast Cancer Translational Program, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, 1665 Aurora Court, Aurora, CO 80045, USA
- Program in Reproductive Sciences, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO 80045, USA
| | - Holly A. Martinson
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO 80045, USA
- Young Women’s Breast Cancer Translational Program, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, 1665 Aurora Court, Aurora, CO 80045, USA
- Cancer Biology Program, University of Colorado Anschutz Medical Campus, 12801 E 17th Ave, Aurora, CO 80045, USA
| | - Courtney B. Betts
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO 80045, USA
- Young Women’s Breast Cancer Translational Program, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, 1665 Aurora Court, Aurora, CO 80045, USA
- Cell Biology, Stem cells, and Development, 12801 E 17th Ave, Aurora, CO 80045, USA
| | - Traci R. Lyons
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO 80045, USA
- Young Women’s Breast Cancer Translational Program, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, 1665 Aurora Court, Aurora, CO 80045, USA
| | - Sonali Jindal
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO 80045, USA
- Young Women’s Breast Cancer Translational Program, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, 1665 Aurora Court, Aurora, CO 80045, USA
| | - Qiuchen Guo
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO 80045, USA
- Young Women’s Breast Cancer Translational Program, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, 1665 Aurora Court, Aurora, CO 80045, USA
- Cancer Biology Program, University of Colorado Anschutz Medical Campus, 12801 E 17th Ave, Aurora, CO 80045, USA
| | - Lisa M. Coussens
- Department of Cell & Developmental Biology, Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Virginia F. Borges
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO 80045, USA
- Young Women’s Breast Cancer Translational Program, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, 1665 Aurora Court, Aurora, CO 80045, USA
| | - Pepper Schedin
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO 80045, USA
- Young Women’s Breast Cancer Translational Program, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, 1665 Aurora Court, Aurora, CO 80045, USA
- Program in Reproductive Sciences, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO 80045, USA
- Cancer Biology Program, University of Colorado Anschutz Medical Campus, 12801 E 17th Ave, Aurora, CO 80045, USA
- Cell Biology, Stem cells, and Development, 12801 E 17th Ave, Aurora, CO 80045, USA
- Department of Cell & Developmental Biology, Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| |
Collapse
|
29
|
Jindal S, Gao D, Bell P, Albrektsen G, Edgerton SM, Ambrosone CB, Thor AD, Borges VF, Schedin P. Postpartum breast involution reveals regression of secretory lobules mediated by tissue-remodeling. Breast Cancer Res 2014; 16:R31. [PMID: 24678808 PMCID: PMC4053254 DOI: 10.1186/bcr3633] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 03/06/2014] [Indexed: 01/05/2023] Open
Abstract
Introduction A postpartum diagnosis of breast cancer is an independent predictor of metastases, however the reason is unknown. In rodents, the window of postpartum mammary gland involution promotes tumor progression, suggesting a role for breast involution in the poor prognosis of human postpartum breast cancers. Rodent mammary gland involution is characterized by the programmed elimination of the secretory lobules laid down in preparation for lactation. This tissue involution process involves massive epithelial cell death, stromal remodeling, and immune cell infiltration with similarities to microenvironments present during wound healing and tumor progression. Here, we characterize breast tissue from premenopausal women with known reproductive histories to determine the extent, duration and cellular mechanisms of postpartum lobular involution in women. Methods Adjacent normal breast tissues from premenopausal women (n = 183) aged 20 to 45 years, grouped by reproductive categories of nulliparous, pregnant and lactating, and by time since last delivery were evaluated histologically and by special stain for lobular area, lobular type composition, apoptosis and immune cell infiltration using computer assisted quantitative methods. Results Human nulliparous glands were composed dominantly of small (approximately 10 acini per lobule) and medium (approximately 35 acini per lobule) sized lobules. With pregnancy and lactation, a >10 fold increase in breast epithelial area was observed compared to nulliparous cases, and lactating glands were dominated by mature lobules (>100 acini per lobule) with secretory morphology. Significant losses in mammary epithelial area and mature lobule phenotypes were observed within 12 months postpartum. By 18 months postpartum, lobular area content and lobule composition were indistinguishable from nulliparous cases, data consistent with postpartum involution facilitating regression of the secretory lobules developed in preparation for lactation. Analyses of apoptosis and immune cell infiltrate confirmed that human postpartum breast involution is characterized by wound healing-like tissue remodeling programs that occur within a narrowed time frame. Conclusions Human postpartum breast involution is a dominant tissue-remodeling process that returns the total lobular area of the gland to a level essentially indistinguishable from the nulliparous gland. Further research is warranted to determine whether the normal physiologic process of postpartum involution contributes to the poor prognosis of postpartum breast cancer.
Collapse
|
30
|
McCready J, Arendt LM, Glover E, Iyer V, Briendel JL, Lyle SR, Naber SP, Jay DG, Kuperwasser C. Pregnancy-associated breast cancers are driven by differences in adipose stromal cells present during lactation. Breast Cancer Res 2014; 16:R2. [PMID: 24405573 PMCID: PMC3978436 DOI: 10.1186/bcr3594] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 12/24/2013] [Indexed: 01/12/2023] Open
Abstract
INTRODUCTION The prognosis of breast cancer is strongly influenced by the developmental stage of the breast when the tumor is diagnosed. Pregnancy-associated breast cancers (PABCs), cancers diagnosed during pregnancy, lactation, or in the first postpartum year, are typically found at an advanced stage, are more aggressive and have a poorer prognosis. Although the systemic and microenvironmental changes that occur during post-partum involution have been best recognized for their role in the pathogenesis of PABCs, epidemiological data indicate that PABCs diagnosed during lactation have an overall poorer prognosis than those diagnosed during involution. Thus, the physiologic and/or biological events during lactation may have a significant and unrecognized role in the pathobiology of PABCs. METHODS Syngeneic in vivo mouse models of PABC were used to examine the effects of system and stromal factors during pregnancy, lactation and involution on mammary tumorigenesis. Mammary adipose stromal cell (ASC) populations were isolated from mammary glands and examined by using a combination of in vitro and in vivo functional assays, gene expression analysis, and molecular and cellular assays. Specific findings were further investigated by immunohistochemistry in mammary glands of mice as well as in functional studies using ASCs from lactating mammary glands. Additional findings were further investigated using human clinical samples, human stromal cells and using in vivo xenograft assays. RESULTS ASCs present during lactation (ASC-Ls), but not during other mammary developmental stages, promote the growth of carcinoma cells and angiogenesis. ASCs-Ls are distinguished by their elevated expression of cellular retinoic acid binding protein-1 (crabp1), which regulates their ability to retain lipid. Human breast carcinoma-associated fibroblasts (CAFs) exhibit traits of ASC-Ls and express crabp1. Inhibition of crabp1in CAFs or in ASC-Ls abolished their tumor-promoting activity and also restored their ability to accumulate lipid. CONCLUSIONS These findings imply that (1) PABC is a complex disease, which likely has different etiologies when diagnosed during different stages of pregnancy; (2) both systemic and local factors are important for the pathobiology of PABCs; and (3) the stromal changes during lactation play a distinct and important role in the etiology and pathogenesis of PABCs that differ from those during post-lactational involution.
Collapse
|
31
|
Madaras L, Kovács KA, Szász AM, Kenessey I, Tőkés AM, Székely B, Baranyák Z, Kiss O, Dank M, Kulka J. Clinicopathological Features and Prognosis of Pregnancy Associated Breast Cancer – A Matched Case Control Study. Pathol Oncol Res 2013; 20:581-90. [DOI: 10.1007/s12253-013-9735-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 12/05/2013] [Indexed: 12/14/2022]
|
32
|
Sundaram S, Johnson AR, Makowski L. Obesity, metabolism and the microenvironment: Links to cancer. J Carcinog 2013; 12:19. [PMID: 24227994 PMCID: PMC3816318 DOI: 10.4103/1477-3163.119606] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 08/06/2013] [Indexed: 02/06/2023] Open
Abstract
Historically, cancer research has focused on identifying mutations or amplification of genes within the tumor, which informed the development of targeted therapies against affected pathways. This work often considers tumor cells in isolation; however, it is becoming increasingly apparent that the microenvironment surrounding tumor cells strongly influences tumor onset and progression. This is the so-called “seed and soil” hypothesis wherein the seed (cancer cell) is fed and molded by the metabolites, growth factors, modifications of the extracellular matrix or angiogenic factors provided by the soil (or stroma). Currently, 65% of the US population is obese or overweight; similarly staggering figures are reported in US children and globally. Obesity mediates and can exacerbate, both normal and tumor microenvironment dysfunction. Many obesity-associated endocrine, metabolic and inflammatory mediators are suspected to play a role in oncogenesis by modifying systemic nutrient metabolism and the nutrient substrates available locally in the stroma. It is vitally important to understand the biological processes linking obesity and cancer to develop better intervention strategies aimed at curbing the carcinogenic events associated with obesity. In this review, obesity-driven changes in both the normal and tumor microenvironment, alterations in metabolism, and release of signaling molecules such as endocrine, growth, and inflammatory mediators will be highlighted. In addition, we will discuss the effects of the timing of obesity onset or particular “windows of susceptibility,” with a focus on breast cancer etiology.
Collapse
Affiliation(s)
- Sneha Sundaram
- Department of Nutrition, Nutrition Obesity Research Center, and Lineberger Comprehensive Cancer Center, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 135 Dauer Drive, CB #7461, Chapel Hill, NC, 27599, USA
| | | | | |
Collapse
|
33
|
Matafome P, Santos-Silva D, Sena CM, Seiça R. Common mechanisms of dysfunctional adipose tissue and obesity-related cancers. Diabetes Metab Res Rev 2013; 29:285-95. [PMID: 23390053 DOI: 10.1002/dmrr.2395] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 06/07/2012] [Accepted: 01/24/2013] [Indexed: 12/13/2022]
Abstract
The relation between cancer and metabolic disorders was recognized several decades ago, but the underlying mechanisms involved in cancer development and progression remain obscure. In the last years, many groups have been studying systemic adipose tissue markers in cancer patients. However, few consistent results were obtained. On the other hand, several studies revealed many aspects of adipose tissue physiology in obesity. Nowadays, it is recognized that excessive lipid uptake in adipocytes leads to hypertrophy and consequently to metabolic dysregulation, hypoxia, inflammation, impaired adipocytokine expression and angiogenesis, insulin resistance and macrophage recruitment. In obese patients, tumours commonly colocalize with excessive adipose tissue accumulation, and most of the features of hypertrophic adipose tissue are observed in cancer patients, namely breast and colon. This review aimed to summarize pathological adipose tissue alterations that may contribute to cancer aetiology and development.
Collapse
Affiliation(s)
- P Matafome
- Laboratory of Physiology and IBILI, Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal.
| | | | | | | |
Collapse
|
34
|
Pretreatment levels of circulating Th1 and Th2 cytokines, and their ratios, are associated with ER-negative and triple negative breast cancers. Breast Cancer Res Treat 2013; 139:477-88. [PMID: 23624818 DOI: 10.1007/s10549-013-2549-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 04/22/2013] [Indexed: 02/01/2023]
Abstract
Immune signatures in breast tumors differ by estrogen receptor (ER) status. The purpose of this study was to assess associations between ER phenotypes and circulating levels of cytokines that co-ordinate cell-mediated [T-helper type 1 (Th1)] and humoral [T-helper type 2 (Th2)] immunity. We conducted a case-case comparison of 523 women with newly diagnosed breast cancer to evaluate associations between 27 circulating cytokines, measured using Luminex XMap technology, and breast cancer phenotypes [ER(-) vs. ER(+); triple negative breast cancer (TNBC) vs. luminal A (LumA)]. Ratios of Th1 to Th2 cytokines were also evaluated. Levels of interleukin (IL)-5, a Th-2 cytokine, were higher in ER(-) than in ER(+) tumors. The highest tertile of IL-5 was more strongly associated with ER(-) (OR = 2.33, 95 % CI 1.40-3.90) and TNBCs (OR = 2.78, 95 % CI 1.53-5.06) compared to ER(+) and LumA cancers, respectively, particularly among premenopausal women (OR = 4.17, 95 % CI 1.86-9.34, ER(-) vs. ER(+); OR = 5.60, 95 % CI 2.09-15.01, TNBC vs. LumA). Elevated Th1 cytokines were also detected in women with ER(-) and TNBCs, with women in the highest tertile of interferon α2 (OR = 2.39, 95 % CI 1.31-4.35) or tumor necrosis factor-α (OR = 2.27, 95 % CI 1.21-4.26) being twice as likely to have TNBC versus LumA cancer. When cytokine ratios were examined, women with the highest ratios of Th1 cytokines to IL-5 levels were least likely to have ER(-) or TNBCs compared to ER(+) or LumA cancers, respectively. The strongest associations were in premenopausal women, who were up to 80 % less likely to have TNBC than LumA cancers (IL-12p40/IL-5, OR = 0.19, 95 % CI 0.07-0.56). These findings indicate that immune function is associated with ER(-) and TNBC and may be most relevant among younger women, who are likely to be diagnosed with these aggressive phenotypes.
Collapse
|
35
|
Teplova I, Lozy F, Price S, Singh S, Barnard N, Cardiff RD, Birge RB, Karantza V. ATG proteins mediate efferocytosis and suppress inflammation in mammary involution. Autophagy 2013; 9:459-75. [PMID: 23380905 PMCID: PMC3627664 DOI: 10.4161/auto.23164] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Involution is the process of post-lactational mammary gland regression to quiescence and it involves secretory epithelial cell death, stroma remodeling and gland repopulation by adipocytes. Though reportedly accompanying apoptosis, the role of autophagy in involution has not yet been determined. We now report that autophagy-related (ATG) proteins mediate dead cell clearance and suppress inflammation during mammary involution. In vivo, Becn1+/− and Atg7-deficient mammary epithelial cells (MECs) produced ‘competent’ apoptotic bodies, but were defective phagocytes in association with reduced expression of the MERTK and ITGB5 receptors, thus pointing to defective apoptotic body engulfment. Atg-deficient tissues exhibited higher levels of involution-associated inflammation, which could be indicative of a tumor-modulating microenvironment, and developed ductal ectasia, a manifestation of deregulated post-involution gland remodeling. In vitro, ATG (BECN1 or ATG7) knockdown compromised MEC-mediated apoptotic body clearance in association with decreased RAC1 activation, thus confirming that, in addition to the defective phagocytic processing reported by other studies, ATG protein defects also impair dead cell engulfment.
Using two different mouse models with mammary gland-associated Atg deficiencies, our studies shed light on the essential role of ATG proteins in MEC-mediated efferocytosis during mammary involution and provide novel insights into this important developmental process. This work also raises the possibility that a regulatory feedback loop exists, by which the efficacy of phagocytic cargo processing in turn regulates the rate of engulfment and ultimately determines the kinetics of phagocytosis and dead cell clearance.
Collapse
Affiliation(s)
- Irina Teplova
- University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Garofalo JM, Bowers DM, Browne RW, MacQueen BT, Mashtare T, Martin LB, Masso-Welch PA. Mouse mammary gland is refractory to the effects of ethanol after natural lactation. Comp Med 2013; 63:38-47. [PMID: 23561936 PMCID: PMC3567375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/16/2012] [Accepted: 08/30/2012] [Indexed: 06/02/2023]
Abstract
Ethanol is a dietary factor that dose-dependently increases breast cancer risk in women. We previously have shown that ethanol increases mammary epithelial density through increased branching after dietary exposure during puberty in CD2/F1 mice. To extend these studies to parous mice in a breast cancer model, we used a transgenic mouse model of human parity-associated breast cancer, the FVB-MMTV-Her2/Neu mouse, which overexpresses wildtype EGFR2, resulting in constitutive activation of growth signaling in the mammary epithelium. Here we describe the short-term effects of ethanol feeding on progression through involution. Mice were fed diets supplemented with 0%, 0.5%, 1%, or 2% ethanol for 4, 9, or 14 d starting on day 21 of lactation (that is, at the start of natural postlactational involution). Unlike peripubertal mice exposed to ethanol, postlactational dams showed no changes in body weight; liver, spleen, and kidney weights; and pathology. Ethanol exposure had no effect on mammary gland lobular density and adipocyte size throughout involution. Likewise, the infiltration of inflammatory cells and serum oxidized lipid species were unchanged by diet, suggesting that ethanol feeding had no effect on local inflammation (leukocyte infiltration) or systemic inflammation (oxidized lipids). In conclusion, ethanol exposure of parous dams had no effect on mammary gland structure or the regression of the lactating mammary gland to a resting state. The period of involution that follows natural lactation appears to be refractory to developmental effects of ethanol on mammary epithelium.
Collapse
Affiliation(s)
| | - Dawn M Bowers
- Biotechnical and Clinical Laboratory Sciences, School of Medicine and Biomedical Sciences and
| | - Richard W Browne
- Biotechnical and Clinical Laboratory Sciences, School of Medicine and Biomedical Sciences and
| | - Brian T MacQueen
- Biotechnical and Clinical Laboratory Sciences, School of Medicine and Biomedical Sciences and
| | - Terry Mashtare
- Department of Biostatistics, School of Public Health and Health Professions, State University of New York at Buffalo, Buffalo, New York
| | | | - Patricia A Masso-Welch
- Biotechnical and Clinical Laboratory Sciences, School of Medicine and Biomedical Sciences and
| |
Collapse
|
37
|
Parashurama N, Lobo NA, Ito K, Mosley AR, Habte FG, Zabala M, Smith BR, Lam J, Weissman IL, Clarke MF, Gambhir SS. Remodeling of endogenous mammary epithelium by breast cancer stem cells. Stem Cells 2013; 30:2114-27. [PMID: 22899386 DOI: 10.1002/stem.1205] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Poorly regulated tissue remodeling results in increased breast cancer risk, yet how breast cancer stem cells (CSC) participate in remodeling is unknown. We performed in vivo imaging of changes in fluorescent, endogenous duct architecture as a metric for remodeling. First, we quantitatively imaged physiologic remodeling of primary branches of the developing and regenerating mammary tree. To assess CSC-specific remodeling events, we isolated CSC from MMTV-Wnt1 (mouse mammary tumor virus long-term repeat enhancer driving Wnt1 oncogene) breast tumors, a well studied model in which tissue remodeling affects tumorigenesis. We confirm that CSC drive tumorigenesis, suggesting a link between CSC and remodeling. We find that normal, regenerating, and developing gland maintain a specific branching pattern. In contrast, transplantation of CSC results in changes in the branching patterns of endogenous ducts while non-CSC do not. Specifically, in the presence of CSC, we identified an increased number of branches, branch points, ducts which have greater than 40 branches (5/33 for CSC and 0/39 for non-CSC), and histological evidence of increased branching. Moreover, we demonstrate that only CSC implants invade into surrounding stroma with structures similar to developing mammary ducts (nine for CSC and one for non-CSC). Overall, we demonstrate a novel approach for imaging physiologic and pathological remodeling. Furthermore, we identify unique, CSC-specific, remodeling events. Our data suggest that CSC interact with the microenvironment differently than non-CSC, and that this could eventually be a therapeutic approach for targeting CSC.
Collapse
Affiliation(s)
- Natesh Parashurama
- Molecular Imaging Program @Stanford, Department of Radiology, Division of Nuclear Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Fornetti J, Martinson H, Borges V, Schedin P. Emerging targets for the prevention of pregnancy-associated breast cancer. Cell Cycle 2012; 11:639-40. [PMID: 22374663 DOI: 10.4161/cc.11.4.19358] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
39
|
Borges VF, Schedin P. Could NSAIDs become a preventative therapy in pregnancy-associated breast cancer? BREAST CANCER MANAGEMENT 2012. [DOI: 10.2217/bmt.12.15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SUMMARY Pregnancy-associated breast cancer (PABC) is a unique type of young women’s breast cancer that includes two biologically distinct conditions: those diagnosed during pregnancy and those diagnosed postpartum. It is the dominant subset of postpartum PABC that is more consistently associated with higher breast cancer mortality. Preclinical work has identified the normal event of postpartum involution as a wound-healing milieu rich in immune cells. We have shown that the involution environment drives tumor growth, proliferation and metastasis. Moreover, we have demonstrated in animal models that this ‘involution effect’ can be abrogated with drug therapy, namely NSAIDs, which target normal involution pathways implicated in PABC tumor promotion. In this perspective, we review the contemporary understanding of PABC, our preclinical modeling and its implications and the unmet research needs required for future translation of these preclinical studies into rational and safe human clinical trials.
Collapse
Affiliation(s)
- Virginia F Borges
- University of Colorado Denver Anschutz Medical Campus, 12801 E. 17th Avenue, Room 8112, Aurora, CO 80045, USA
| | - Pepper Schedin
- AMC Cancer Research Center, 3401 Quebec Street, Suite 3200, Denver, CO 80207, USA
| |
Collapse
|
40
|
Luo H, Hao Y, Tang B, Zeng D, Shi Y, Yu P. Mouse forestomach carcinoma cells immunosuppress macrophages through transforming growth factor-β1. Mol Med Rep 2012; 5:988-92. [PMID: 22307817 PMCID: PMC3493101 DOI: 10.3892/mmr.2012.777] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Accepted: 01/03/2012] [Indexed: 11/26/2022] Open
Abstract
Peritoneal implantation metastasis of gastric cancer cells is associated with poor prognosis. Peritoneal macrophages are the most important immune cells in the abdominal cavity to control tumor metastasis. In the present study, the immunosuppressive effects of mouse forestomach cells on macrophages were examined. Conditioned medium from mouse forestomach cell cultures were used to treat isolated peritoneal macrophages. A colorimetry-based phagocytosis assay was performed to investigate the functional change of macrophages. The alteration of cytokine secretion by macrophages was measured by ELISA assay. Specific markers of macrophage polarization were analyzed by real-time RT-PCR. TGF-β1 signaling was evaluated by western blotting. Neutralization experiments were performed using an anti-TGF-β1 antibody. Conditioned medium reduced the phagocytotic capability of macrophages. Lower TNF-α and IL-1β levels and higher IL-10 and VEGF levels were observed. Real-time RT-PCR showed increased mRNA levels of M2 macrophage markers. Further study revealed that TGF-β1 was significantly elevated in the conditioned medium and TGF-β1 signaling was activated in the macrophages by the treatment of conditioned medium. Neutralization of TGF-β1 reversed the immunosuppressive effects on macrophages. Immunosuppressive macrophages can be induced by conditioned medium from mouse forestomach cell cultures. These effects appeared to occur through the production of TGF-β1 by the tumor cells. Targeted TGF-β1 intervention may help to control peritoneal metastasis of gastric cancers.
Collapse
Affiliation(s)
- Huaxing Luo
- General Surgery Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | | | | | | | | | | |
Collapse
|
41
|
Baumgarten SC, Frasor J. Minireview: Inflammation: an instigator of more aggressive estrogen receptor (ER) positive breast cancers. Mol Endocrinol 2012; 26:360-71. [PMID: 22301780 DOI: 10.1210/me.2011-1302] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Approximately 75% of breast tumors express the estrogen receptor (ER), and women with these tumors will receive endocrine therapy. Unfortunately, up to 50% of these patients will fail ER-targeted therapies due to either de novo or acquired resistance. ER-positive tumors can be classified based on gene expression profiles into Luminal A- and Luminal B-intrinsic subtypes, with distinctly different responses to endocrine therapy and overall patient outcome. However, the underlying biology causing this tumor heterogeneity has yet to become clear. This review will explore the role of inflammation as a risk factor in breast cancer as well as a player in the development of more aggressive, therapy-resistant ER-positive breast cancers. First, breast cancer risk factors, such as obesity and mammary gland involution after pregnancy, which can foster an inflammatory microenvironment within the breast, will be described. Second, inflammatory components of the tumor microenvironment, including tumor-associated macrophages and proinflammatory cytokines, which can act on nearby breast cancer cells and modulate tumor phenotype, will be explored. Finally, activation of the nuclear factor κB (NF-κB) pathway and its cross talk with ER in the regulation of key genes in the promotion of more aggressive breast cancers will be reviewed. From these multiple lines of evidence, we propose that inflammation may promote more aggressive ER-positive tumors and that combination therapy targeting both inflammation and estrogen production or actions could benefit a significant portion of women whose ER-positive breast tumors fail to respond to endocrine therapy.
Collapse
Affiliation(s)
- Sarah C Baumgarten
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 South Wolcott Avenue, Chicago, IL 60612, USA
| | | |
Collapse
|
42
|
O'Brien J, Martinson H, Durand-Rougely C, Schedin P. Macrophages are crucial for epithelial cell death and adipocyte repopulation during mammary gland involution. Development 2012; 139:269-75. [DOI: 10.1242/dev.071696] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mammary gland development is dependent on macrophages, as demonstrated by their requirement during the expansion phases of puberty and pregnancy. Equally dramatic tissue restructuring occurs following lactation, when the gland regresses to a state that histologically resembles pre-pregnancy through massive programmed epithelial cell death and stromal repopulation. Postpartum involution is characterized by wound healing-like events, including an influx of macrophages with M2 characteristics. Macrophage levels peak after the initial wave of epithelial cell death, suggesting that initiation and execution of cell death are macrophage independent. To address the role of macrophages during weaning-induced mammary gland involution, conditional systemic deletion of macrophages expressing colony stimulating factor 1 receptor (CSF1R) was initiated just prior to weaning in the Mafia mouse model. Depletion of CSF1R+ macrophages resulted in delayed mammary involution as evidenced by loss of lysosomal-mediated and apoptotic epithelial cell death, lack of alveolar regression and absence of adipocyte repopulation 7 days post-weaning. Failure to execute involution occurred in the presence of milk stasis and STAT3 activation, indicating that neither is sufficient to initiate involution in the absence of CSF1R+ macrophages. Injection of wild-type bone marrow-derived macrophages (BMDMs) or M2-differentiated macrophages into macrophage-depleted mammary glands was sufficient to rescue involution, including apoptosis, alveolar regression and adipocyte repopulation. BMDMs exposed to the postpartum mammary involution environment upregulated the M2 markers arginase 1 and mannose receptor. These data demonstrate the necessity of macrophages, and implicate M2-polarized macrophages, for epithelial cell death during normal postpartum mammary gland involution.
Collapse
Affiliation(s)
- Jenean O'Brien
- School of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, MS8117, RC-1S, 8401K, 12801 E 17th Ave, Aurora, CO 80045, USA
- Program in Cancer Biology, University of Colorado Anschutz Medical Campus, MS8104, RC-1S, 5117, 12801 E 17th Ave, Aurora, CO 80045, USA
| | - Holly Martinson
- School of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, MS8117, RC-1S, 8401K, 12801 E 17th Ave, Aurora, CO 80045, USA
- Program in Cancer Biology, University of Colorado Anschutz Medical Campus, MS8104, RC-1S, 5117, 12801 E 17th Ave, Aurora, CO 80045, USA
| | - Clarissa Durand-Rougely
- School of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, MS8117, RC-1S, 8401K, 12801 E 17th Ave, Aurora, CO 80045, USA
| | - Pepper Schedin
- School of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, MS8117, RC-1S, 8401K, 12801 E 17th Ave, Aurora, CO 80045, USA
- Program in Cancer Biology, University of Colorado Anschutz Medical Campus, MS8104, RC-1S, 5117, 12801 E 17th Ave, Aurora, CO 80045, USA
- University of Colorado Cancer Center, Bldg 500, Suite 6004C, 13001 E 17th Place, Aurora, CO 80045 USA
- AMC Cancer Research Center, Bldg 500, Suite 6004C, 13001 E 17th Place, Aurora, CO 80045, USA
| |
Collapse
|
43
|
Luo HX, Yu PW, Hao YX, Zhao YL, Shi Y, Tang B. Effects of CO(2) pneumoperitoneum on peritoneal macrophage function and peritoneal metastasis in mice with gastric cancer. ACTA ACUST UNITED AC 2011; 48:40-7. [PMID: 22189206 DOI: 10.1159/000334282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 08/15/2011] [Indexed: 12/27/2022]
Abstract
BACKGROUND Whether laparoscopy with CO(2) pneumoperitoneum affects the peritoneal metastasis of gastric cancer is a pressing question. In light of the important impact change in peritoneal macrophage function has on the peritoneal metastasis of gastric cancer, this study investigated the change in peritoneal macrophage function in gastric cancer in the CO(2) pneumoperitoneum environment, as well as its effect on the peritoneal metastasis of gastric cancer. METHODS An orthotopic transplantation model of murine forestomach carcinoma was established using the 615 mouse line. The mice bearing tumors were randomly divided into four groups (30 mice each group): anesthesia alone, laparotomy, mini-laparotomy, and CO(2) insufflation. After the operation, peritoneal macrophages were collected from 6 mice in each group and cultured. The phagocytosis of neutral red by macrophages and the levels of NO, TNF-α, IL-10, and VEGF produced by macrophages were measured after 12, 24, 48, and 72 h of culture. The remaining mice were observed after 2 weeks for the rate of peritoneal metastasis of forestomach carcinoma cells and the total weight of implanted nodules. RESULTS In the laparotomy group, 4 mice died intraoperatively and 2 died in the CO(2) insufflation group. The uptake of neutral red by peritoneal macrophages and the levels of NO, TNF-α, IL-10, and VEGF secreted by peritoneal macrophages in the laparotomy group and mini-laparotomy group after 12 h of culture were all significantly higher than those in the anesthesia-alone group (p < 0.05). The corresponding levels in the CO(2) insufflation group after 12 h were all significantly lower than those in the anesthesia-alone group (p < 0.05). There were no significant differences among the four groups at 24, 48, and 72 h after culture. Comparing with those in the laparotomy group, the uptake of neutral red by peritoneal macrophages and the levels of NO, TNF-α, IL-10, and VEGF secreted by peritoneal macrophages in the CO(2) insufflation group were all significantly lower after 12 h of culture (p < 0.05), but did not differ significantly at 24, 48, and 72 h of culture (p > 0.05), and did not differ significantly in the mini-laparotomy group at all the time (p > 0.05). The rate of peritoneal metastasis of mouse forestomach carcinoma was 50% in the laparotomy group, 45.83% in the mini-laparotomy group, and 45.45% in the CO(2) insufflation group; this difference was not statistically significant (p > 0.05). The total weight of implanted nodules of mouse forestomach carcinoma was 1.02 ± 0.38 g in the laparotomy group, 0.97 ± 0.41 g in the mini-laparotomy group, and 0.93 ± 0.45 g in the CO(2) insufflation group, which was not a statistically significant difference (p > 0.05). CONCLUSION CO(2) pneumoperitoneum neither significantly changes the phagocytosis and cytokine secretion functions of peritoneal macrophages in gastric cancer-bearing mice nor significantly promotes peritoneal metastasis of gastric cancer.
Collapse
Affiliation(s)
- H-X Luo
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | | | | | | | | | | |
Collapse
|
44
|
Yang M, Chen J, Su F, Yu B, Su F, Lin L, Liu Y, Huang JD, Song E. Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells. Mol Cancer 2011; 10:117. [PMID: 21939504 PMCID: PMC3190352 DOI: 10.1186/1476-4598-10-117] [Citation(s) in RCA: 545] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 09/22/2011] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) are alternatively activated cells induced by interleukin-4 (IL-4)-releasing CD4+ T cells. TAMs promote breast cancer invasion and metastasis; however, the mechanisms underlying these interactions between macrophages and tumor cells that lead to cancer metastasis remain elusive. Previous studies have found microRNAs (miRNAs) circulating in the peripheral blood and have identified microvesicles, or exosomes, as mediators of cell-cell communication. Therefore, one alternative mechanism for the promotion of breast cancer cell invasion by TAMs may be through macrophage-secreted exosomes, which would deliver invasion-potentiating miRNAs to breast cancer cells. RESULTS We utilized a co-culture system with IL-4-activated macrophages and breast cancer cells to verify that miRNAs are transported from macrophages to breast cancer cells. The shuttling of fluorescently-labeled exogenous miRNAs from IL-4-activated macrophages to co-cultivated breast cancer cells without direct cell-cell contact was observed. miR-223, a miRNA specific for IL-4-activated macrophages, was detected within the exosomes released by macrophages and was significantly elevated in the co-cultivated SKBR3 and MDA-MB-231 cells. The invasiveness of the co-cultivated breast cancer cells decreased when the IL-4-activated macrophages were treated with a miR-223 antisense oligonucleotide (ASO) that would inhibit miR-223 expression. Furthermore, results from a functional assay revealed that miR-223 promoted the invasion of breast cancer cells via the Mef2c-β-catenin pathway. CONCLUSIONS We conclude that macrophages regulate the invasiveness of breast cancer cells through exosome-mediated delivery of oncogenic miRNAs. Our data provide insight into the mechanisms underlying the metastasis-promoting interactions between macrophages and breast cancer cells.
Collapse
Affiliation(s)
- Mei Yang
- Breast Tumor Center, Sun-Yat-Sen Memorial Hospital, Sun-Yat-Sen University, Guangzhou, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Reactive oxygen species initiate luminal but not basal cell death in cultured human mammary alveolar structures: a potential regulator of involution. Cell Death Dis 2011; 2:e189. [PMID: 21814287 PMCID: PMC3181416 DOI: 10.1038/cddis.2011.69] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Post-lactational involution of the mammary gland is initiated within days of weaning. Clearing of cells occurs by apoptosis of the milk-secreting luminal cells in the alveoli and through stromal tissue remodeling to return the gland almost completely to its pre-pregnant state. The pathways that specifically target involution of the luminal cells in the alveoli but not the basal and ductal cells are poorly understood. In this study we show in cultured human mammary alveolar structures that the involution process is initiated by fresh media withdrawal, and is characterized by cellular oxidative stress, expression of activated macrophage marker CD68 and finally complete clearing of the luminal but not basal epithelial layer. This process can be simulated by ectopic addition of reactive oxygen species (ROS) in cultures without media withdrawal. Cells isolated from post-involution alveoli were enriched for the CD49f+ mammary stem cell (MaSC) phenotype and were able to reproduce a complete alveolar structure in subcultures without any significant loss in viability. We propose that the ROS produced by accumulated milk breakdown post-weaning may be the mechanism underlying the selective involution of secretory alveolar luminal cells, and that our culture model represents an useful means to investigate this and other mechanisms further.
Collapse
|
46
|
Conklin MW, Eickhoff JC, Riching KM, Pehlke CA, Eliceiri KW, Provenzano PP, Friedl A, Keely PJ. Aligned collagen is a prognostic signature for survival in human breast carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:1221-32. [PMID: 21356373 DOI: 10.1016/j.ajpath.2010.11.076] [Citation(s) in RCA: 936] [Impact Index Per Article: 66.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 11/11/2010] [Accepted: 11/17/2010] [Indexed: 12/11/2022]
Abstract
Evidence for the potent influence of stromal organization and function on invasion and metastasis of breast tumors is ever growing. We have performed a rigorous examination of the relationship of a tumor-associated collagen signature-3 (TACS-3) to the long-term survival rate of human patients. TACS-3 is characterized by bundles of straightened and aligned collagen fibers that are oriented perpendicular to the tumor boundary. An evaluation of TACS-3 was performed in biopsied tissue sections from 196 patients by second harmonic generation imaging of the backscattered signal generated by collagen. Univariate analysis of a Cox proportional hazard model demonstrated that the presence of TACS-3 was associated with poor disease-specific and disease-free survival, resulting in hazard ratios between 3.0 and 3.9. Furthermore, TACS-3 was confirmed to be an independent prognostic indicator regardless of tumor grade and size, estrogen or progesterone receptor status, human epidermal growth factor receptor-2 status, node status, and tumor subtype. Interestingly, TACS-3 was positively correlated to expression of stromal syndecan-1, a receptor for several extracellular matrix proteins including collagens. Because of the strong statistical evidence for poor survival in patients with TACS, and because the assessment can be performed in routine histopathological samples imaged via second harmonic generation or using picrosirius, we propose that quantifying collagen alignment is a viable, novel paradigm for the prediction of human breast cancer survival.
Collapse
Affiliation(s)
- Matthew W Conklin
- Department of Pharmacology, and the Laboratory for Molecular Biology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Khokha R, Werb Z. Mammary gland reprogramming: metalloproteinases couple form with function. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a004333. [PMID: 21106646 DOI: 10.1101/cshperspect.a004333] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The adult mammary structure provides for the rapid growth, development, and immunological protection of the live-born young of mammals through its production of milk. The dynamic remodeling of the branched epithelial structure of the mammary gland in response to physiological stimuli that allow its programmed branching morphogenesis at puberty, cyclical turnover during the reproductive cycle, differentiation into a secretory organ at parturition, postlactational involution, and ultimately, regression with age is critical for these processes. Extracellular metalloproteinases are essential for the remodeling programs that operate in the tissue microenvironment at the interface of the epithelium and the stroma, coupling form with function. Deregulated proteolytic activity drives the transition of a physiological mammary microenvironment into a tumor microenvironment, facilitating malignant transformation.
Collapse
Affiliation(s)
- Rama Khokha
- Ontario Cancer Institute/University Health Network, University of Toronto, Ontario, Canada.
| | | |
Collapse
|
48
|
Mukhtar RA, Nseyo O, Campbell MJ, Esserman LJ. Tumor-associated macrophages in breast cancer as potential biomarkers for new treatments and diagnostics. Expert Rev Mol Diagn 2011; 11:91-100. [PMID: 21171924 DOI: 10.1586/erm.10.97] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
While several inflammatory cell types participate in cancer development, macrophages specifically play a key role in breast cancer, where they appear to be part of the pathogenesis of high-grade tumors. Tumor-associated macrophages (TAMs) produce factors that promote angiogenesis, remodel tissue and dampen the immune response to tumors. Specific macrophage types contribute to increased metastases in animal models, while human studies show an association between TAMs and tumors with poor prognostic features. Macrophages display a spectrum of phenotypic states, with the tumor microenvironment skewing TAMs towards a 'nonclassical' activation state, known as the M2, or wound healing/regulatory state. These TAMs are found in high-risk breast cancers, making them an important therapeutic target to explore. Improved techniques for identifying TAMs should translate into clinical applications for prognosis and treatment.
Collapse
Affiliation(s)
- Rita A Mukhtar
- Department of Surgery, University of California, San Francisco, Box 1710 UCSF, San Francisco, CA 94143-1710, USA
| | | | | | | |
Collapse
|
49
|
Coussens LM, Pollard JW. Leukocytes in mammary development and cancer. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a003285. [PMID: 21123394 DOI: 10.1101/cshperspect.a003285] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Leukocytes, of both the innate and adaptive lineages, are normal cellular components of all tissues. These important cells not only are critical for regulating normal tissue homeostasis, but also are significant paracrine regulators of all physiologic and pathologic tissue repair processes. This article summarizes recent insights regarding the trophic roles of leukocytes at each stage of mammary gland development and during cancer development, with a focus on Murids and humans.
Collapse
Affiliation(s)
- Lisa M Coussens
- Department of Pathology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, 94143, USA
| | | |
Collapse
|
50
|
Scribner KC, Wellberg EA, Metz RP, Porter WW. Singleminded-2s (Sim2s) promotes delayed involution of the mouse mammary gland through suppression of Stat3 and NFκB. Mol Endocrinol 2011; 25:635-44. [PMID: 21292822 DOI: 10.1210/me.2010-0423] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Postlactational involution of the mammary gland provides a unique model to study breast cancer susceptibility and metastasis. We have shown that the short isoform of Singleminded-2s (Sim2s), a basic helix loop helix/PAS transcription factor, plays a role in promoting lactogenic differentiation, as well as maintaining mammary epithelial differentiation and malignancy. Sim2s is dynamically expressed during mammary gland development, with expression peaking during lactation, and decreasing in early involution. To determine the role of SIM2S in involution, we used transgenic mice expressing SIM2S under the mouse mammary tumor virus-Sim2s promoter. Overexpression of Sim2s in the mouse mammary gland resulted in delayed involution, indicated by a lower proportion of cleaved caspase-3-positive cells and slower reestablishment of the mammary fat pad. Immunohistochemical and quantitative RNA analysis showed a decrease in apoptotic markers and inflammatory response genes, and an increase in antiapoptotic genes, which were accompanied by inhibition of signal transducer and activator of transcription 3 activity. Microarray analysis confirmed that genes in the signal transducer and activator of transcription 3 signaling pathway were repressed by SIM2S expression, along with nuclear factor-κB and other key pathways involved in mammary gland development. Multiparous mouse mammary tumor virus-Sim2s females displayed a more differentiated phenotype compared with wild-type controls, characterized by enhanced β-casein expression and alveolar structures. Together, these results suggest a role for SIM2S in the normal involuting gland and identify potential downstream pathways regulated by SIM2S.
Collapse
Affiliation(s)
- Kelly C Scribner
- Department of Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, Texas 77843-4458, USA
| | | | | | | |
Collapse
|