1
|
Bishop PJ, Pierce SE. Late acquisition of erect hindlimb posture and function in the forerunners of therian mammals. SCIENCE ADVANCES 2024; 10:eadr2722. [PMID: 39454012 PMCID: PMC11506245 DOI: 10.1126/sciadv.adr2722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/20/2024] [Indexed: 10/27/2024]
Abstract
The evolutionary transition from early synapsids to therian mammals involved profound reorganization in locomotor anatomy and function, centered around a shift from "sprawled" to "erect" limb postures. When and how this functional shift was accomplished has remained difficult to decipher from the fossil record alone. Through biomechanical modeling of hindlimb force-generating performance in eight exemplar fossil synapsids, we demonstrate that the erect locomotor regime typifying modern therians did not evolve until just before crown Theria. Modeling also identifies a transient phase of increased performance in therapsids and early cynodonts, before crown mammals. Further, quantifying the global actions of major hip muscle groups indicates a protracted juxtaposition of functional redeployment and conservatism, highlighting the intricate interplay between anatomical reorganization and function across postural transitions. We infer a complex history of synapsid locomotor evolution and suggest that major evolutionary transitions between contrasting locomotor behaviors may follow highly nonlinear trajectories.
Collapse
Affiliation(s)
- Peter J. Bishop
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Geosciences Program, Queensland Museum, Brisbane, Queensland, Australia
| | - Stephanie E. Pierce
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
2
|
Kissane RWP, Griffiths A, Sharp AC. Functional anatomy of the wing muscles of the Egyptian fruit bat (Rousettus aegyptiacus) using dissection and diceCT. J Anat 2024. [PMID: 39344777 DOI: 10.1111/joa.14145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/22/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
Bats are unique among mammals for evolving powered flight. However, very little data are available on the muscle properties and architecture of bat flight muscles. Diffusible iodine contrast-enhanced computed tomography (diceCT) is an established tool for 3D visualisation of anatomy and is becoming a more readily accessible and widely used technique. Here, we combine this technique with gross dissection of the Egyptian fruit bat (Rousettus aegyptiacus) to compare muscle masses, fibre lengths and physiological cross-sectional areas (PCSA) of muscles with published forelimb data from an array of non-flying mammals and flying birds. The Egyptian fruit bat has a highly specialised pectoralis (pars posterior) architecturally optimised to generate power. The elbow flexion/extension muscles (biceps brachii and triceps brachii) have comparable PCSAs to the pectoralis, but shorter fibre lengths, which are optimised to generate large forces. Our data also show that the Egyptian fruit bat is more similar to flying birds than non-flying mammals with its highly disparate muscle architecture. Specifically, the Egyptian fruit bat have uniquely enlarged pectoralis muscles and elbow flexion and extension muscles (bicep brachii and triceps brachii) to aid powered flight. Finally, while the Egyptian fruit bat has a comparable heterogeneity in pectoralis (pars posterior) fibre length across the cranial-caudal axis to that seen in birds, the average normalised fibre length is larger than that seen in any of the surveyed birds. Our data here provide a greater understanding of the anatomy and functional specialisation of the forelimb musculature that powers flight.
Collapse
Affiliation(s)
- Roger W P Kissane
- Department of Musculoskeletal and Ageing Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Amy Griffiths
- School of Biosciences, University of Liverpool, Liverpool, UK
| | - Alana C Sharp
- Department of Musculoskeletal and Ageing Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
3
|
Panciroli E, Benson RBJ, Fernandez V, Fraser NC, Humpage M, Luo ZX, Newham E, Walsh S. Jurassic fossil juvenile reveals prolonged life history in early mammals. Nature 2024; 632:815-822. [PMID: 39048827 DOI: 10.1038/s41586-024-07733-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 06/19/2024] [Indexed: 07/27/2024]
Abstract
Living mammal groups exhibit rapid juvenile growth with a cessation of growth in adulthood1. Understanding the emergence of this pattern in the earliest mammaliaforms (mammals and their closest extinct relatives) is hindered by a paucity of fossils representing juvenile individuals. We report exceptionally complete juvenile and adult specimens of the Middle Jurassic docodontan Krusatodon, providing anatomical data and insights into the life history of early diverging mammaliaforms. We used synchrotron X-ray micro-computed tomography imaging of cementum growth increments in the teeth2-4 to provide evidence of pace of life in a Mesozoic mammaliaform. The adult was about 7 years and the juvenile 7 to 24 months of age at death and in the process of replacing its deciduous dentition with its final, adult generation. When analysed against a dataset of life history parameters for extant mammals5, the relative sequence of adult tooth eruption was already established in Krusatodon and in the range observed in extant mammals but this development was prolonged, taking place during a longer period as part of a significantly longer maximum lifespan than extant mammals of comparable adult body mass (156 g or less). Our findings suggest that early diverging mammaliaforms did not experience the same life histories as extant small-bodied mammals and the fundamental shift to faster growth over a shorter lifespan may not have taken place in mammaliaforms until during or after the Middle Jurassic.
Collapse
Affiliation(s)
- Elsa Panciroli
- Natural Sciences Department, National Museums Scotland, Edinburgh, UK.
- University of Oxford Museum of Natural History, Oxford, UK.
| | | | | | - Nicholas C Fraser
- Natural Sciences Department, National Museums Scotland, Edinburgh, UK
| | | | | | - Elis Newham
- School of Engineering and Material Science, Queen Mary University of London, London, UK
- Section Palaeontology, Institute of Geosciences, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Stig Walsh
- Natural Sciences Department, National Museums Scotland, Edinburgh, UK
| |
Collapse
|
4
|
Bishop PJ, Pierce SE. The fossil record of appendicular muscle evolution in Synapsida on the line to mammals: Part I-Forelimb. Anat Rec (Hoboken) 2024; 307:1764-1825. [PMID: 37726984 DOI: 10.1002/ar.25312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/15/2023] [Accepted: 08/08/2023] [Indexed: 09/21/2023]
Abstract
This paper is the first in a two-part series that charts the evolution of appendicular musculature along the mammalian stem lineage, drawing upon the exceptional fossil record of extinct synapsids. Here, attention is focused on muscles of the forelimb. Understanding forelimb muscular anatomy in extinct synapsids, and how this changed on the line to mammals, can provide important perspective for interpreting skeletal and functional evolution in this lineage, and how the diversity of forelimb functions in extant mammals arose. This study surveyed the osteological evidence for muscular attachments in extinct mammalian and nonmammalian synapsids, two extinct amniote outgroups, and a large selection of extant mammals, saurians, and salamanders. Observations were integrated into an explicit phylogenetic framework, comprising 73 character-state complexes covering all muscles crossing the shoulder, elbow, and wrist joints. These were coded for 33 operational taxonomic units spanning >330 Ma of tetrapod evolution, and ancestral state reconstruction was used to evaluate the sequence of muscular evolution along the stem lineage from Amniota to Theria. In addition to producing a comprehensive documentation of osteological evidence for muscle attachments in extinct synapsids, this work has clarified homology hypotheses across disparate taxa and helped resolve competing hypotheses of muscular anatomy in extinct species. The evolutionary history of mammalian forelimb musculature was a complex and nonlinear narrative, punctuated by multiple instances of convergence and concentrated phases of anatomical transformation. More broadly, this study highlights the great insight that a fossil-based perspective can provide for understanding the assembly of novel body plans.
Collapse
Affiliation(s)
- Peter J Bishop
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
- Geosciences Program, Queensland Museum, Brisbane, Queensland, Australia
| | - Stephanie E Pierce
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
5
|
Gônet J, Laurin M, Hutchinson JR. Evolution of posture in amniotes-Diving into the trabecular architecture of the femoral head. J Evol Biol 2023; 36:1150-1165. [PMID: 37363887 DOI: 10.1111/jeb.14187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/29/2023] [Accepted: 04/16/2023] [Indexed: 06/28/2023]
Abstract
Extant amniotes show remarkable postural diversity. Broadly speaking, limbs with erect (strongly adducted, more vertically oriented) posture are found in mammals that are particularly heavy (graviportal) or show good running skills (cursorial), while crouched (highly flexed) limbs are found in taxa with more generalized locomotion. In Reptilia, crocodylians have a "semi-erect" (somewhat adducted) posture, birds have more crouched limbs and lepidosaurs have sprawling (well-abducted) limbs. Both synapsids and reptiles underwent a postural transition from sprawling to more erect limbs during the Mesozoic Era. In Reptilia, this postural change is prominent among archosauriforms in the Triassic Period. However, limb posture in many key Triassic taxa remains poorly known. In Synapsida, the chronology of this transition is less clear, and competing hypotheses exist. On land, the limb bones are subject to various stresses related to body support that partly shape their external and internal morphology. Indeed, bone trabeculae (lattice-like bony struts that form the spongy bone tissue) tend to orient themselves along lines of force. Here, we study the link between femoral posture and the femoral trabecular architecture using phylogenetic generalized least squares. We show that microanatomical parameters measured on bone cubes extracted from the femoral head of a sample of amniote femora depend strongly on body mass, but not on femoral posture or lifestyle. We reconstruct ancestral states of femoral posture and various microanatomical parameters to study the "sprawling-to-erect" transition in reptiles and synapsids, and obtain conflicting results. We tentatively infer femoral posture in several hypothetical ancestors using phylogenetic flexible discriminant analysis from maximum likelihood estimates of the microanatomical parameters. In general, the trabecular network of the femoral head is not a good indicator of femoral posture. However, ancestral state reconstruction methods hold great promise for advancing our understanding of the evolution of posture in amniotes.
Collapse
Affiliation(s)
- Jordan Gônet
- Centre de recherche en paléontologie - Paris, UMR 7207, Sorbonne Université, Muséum national d'histoire naturelle, Centre national de la recherche scientifique, Paris, France
| | - Michel Laurin
- Centre de recherche en paléontologie - Paris, UMR 7207, Sorbonne Université, Muséum national d'histoire naturelle, Centre national de la recherche scientifique, Paris, France
| | - John R Hutchinson
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, UK
| |
Collapse
|
6
|
Kissane RWP, Charles JP, Banks RW, Bates KT. The association between muscle architecture and muscle spindle abundance. Sci Rep 2023; 13:2830. [PMID: 36806712 PMCID: PMC9938265 DOI: 10.1038/s41598-023-30044-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Across the human body, skeletal muscles have a broad range of biomechanical roles that employ complex proprioceptive control strategies to successfully execute a desired movement. This information is derived from peripherally located sensory apparatus, the muscle spindle and Golgi tendon organs. The abundance of these sensory organs, particularly muscle spindles, is known to differ considerably across individual muscles. Here we present a comprehensive data set of 119 muscles across the human body including architectural properties (muscle fibre length, mass, pennation angle and physiological cross-sectional area) and statistically test their relationships with absolute spindle number and relative spindle abundance (the residual value of the linear regression of the log-transformed spindle number and muscle mass). These data highlight a significant positive relationship between muscle spindle number and fibre length, emphasising the importance of fibre length as an input into the central nervous system. However, there appears to be no relationship between muscles architecturally optimised to function as displacement specialists and their provision of muscle spindles. Additionally, while there appears to be regional differences in muscle spindle abundance, independent of muscle mass and fibre length, our data provide no support for the hypothesis that muscle spindle abundance is related to anatomical specialisation.
Collapse
Affiliation(s)
- Roger W P Kissane
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Science, University of Liverpool, The William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK.
| | - James P Charles
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Science, University of Liverpool, The William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Robert W Banks
- Department of Biosciences and Biophysical Sciences Institute, University of Durham, South Road, Durham, DH1 3LE, UK
| | - Karl T Bates
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Science, University of Liverpool, The William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| |
Collapse
|
7
|
Gônet J, Bardin J, Girondot M, Hutchinson JR, Laurin M. Unravelling the postural diversity of mammals: Contribution of humeral cross-sections to palaeobiological inferences. J MAMM EVOL 2023. [DOI: 10.1007/s10914-023-09652-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
8
|
Smith-Paredes D, Vergara-Cereghino ME, Lord A, Moses MM, Behringer RR, Bhullar BAS. Embryonic muscle splitting patterns reveal homologies of amniote forelimb muscles. Nat Ecol Evol 2022; 6:604-613. [PMID: 35314784 PMCID: PMC9090950 DOI: 10.1038/s41559-022-01699-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 12/06/2021] [Indexed: 11/09/2022]
Abstract
Limb muscles are remarkably complex and evolutionarily labile. Although their anatomy is of great interest for studies of the evolution of form and function, their homologies among major amniote clades have remained obscure. Studies of adult musculature are inconclusive owing to the highly derived morphology of modern amniote limbs but correspondences become increasingly evident earlier in ontogeny. We followed the embryonic development of forelimb musculature in representatives of six major amniote clades and found, contrary to current consensus, that these early splitting patterns are highly conserved across Amniota. Muscle mass cleavage patterns and topology are highly conserved in reptiles including birds, irrespective of their skeletal modifications: the avian flight apparatus results from slight early topological modifications that are exaggerated during ontogeny. Therian mammals, while conservative in their cleavage patterns, depart drastically from the ancestral amniote musculoskeletal organization in terms of topology. These topological changes occur through extension, translocation and displacement of muscle groups later in development. Overall, the simplicity underlying the apparent complexity of forelimb muscle development allows us to resolve conflicting hypotheses about homology and to trace the history of each individual forelimb muscle throughout the amniote radiations.
Collapse
Affiliation(s)
- Daniel Smith-Paredes
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA.
- Yale Peabody Museum of Natural History, New Haven, CT, USA.
| | - Miccaella E Vergara-Cereghino
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA
- Yale Peabody Museum of Natural History, New Haven, CT, USA
| | - Arianna Lord
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA
- Yale Peabody Museum of Natural History, New Haven, CT, USA
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Malcolm M Moses
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Richard R Behringer
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Bhart-Anjan S Bhullar
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA.
- Yale Peabody Museum of Natural History, New Haven, CT, USA.
| |
Collapse
|
9
|
Wright MA, Sears KE, Pierce SE. Comparison of Hindlimb Muscle Architecture Properties in Small-Bodied, Generalist Mammals Suggests Similarity in Soft Tissue Anatomy. J MAMM EVOL 2022. [DOI: 10.1007/s10914-022-09608-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Demuth OE, Wiseman ALA, van Beesel J, Mallison H, Hutchinson JR. Three-dimensional polygonal muscle modelling and line of action estimation in living and extinct taxa. Sci Rep 2022; 12:3358. [PMID: 35233027 PMCID: PMC8888607 DOI: 10.1038/s41598-022-07074-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/08/2022] [Indexed: 11/24/2022] Open
Abstract
Biomechanical models and simulations of musculoskeletal function rely on accurate muscle parameters, such as muscle masses and lines of action, to estimate force production potential and moment arms. These parameters are often obtained through destructive techniques (i.e., dissection) in living taxa, frequently hindering the measurement of other relevant parameters from a single individual, thus making it necessary to combine multiple specimens and/or sources. Estimating these parameters in extinct taxa is even more challenging as soft tissues are rarely preserved in fossil taxa and the skeletal remains contain relatively little information about the size or exact path of a muscle. Here we describe a new protocol that facilitates the estimation of missing muscle parameters (i.e., muscle volume and path) for extant and extinct taxa. We created three-dimensional volumetric reconstructions for the hindlimb muscles of the extant Nile crocodile and extinct stem-archosaur Euparkeria, and the shoulder muscles of an extant gorilla to demonstrate the broad applicability of this methodology across living and extinct animal clades. Additionally, our method can be combined with surface geometry data digitally captured during dissection, thus facilitating downstream analyses. We evaluated the estimated muscle masses against physical measurements to test their accuracy in estimating missing parameters. Our estimated muscle masses generally compare favourably with segmented iodine-stained muscles and almost all fall within or close to the range of observed muscle masses, thus indicating that our estimates are reliable and the resulting lines of action calculated sufficiently accurately. This method has potential for diverse applications in evolutionary morphology and biomechanics.
Collapse
Affiliation(s)
- Oliver E Demuth
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hatfield, UK.
- Department of Earth Sciences, University of Cambridge, Cambridge, UK.
| | - Ashleigh L A Wiseman
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hatfield, UK
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
| | - Julia van Beesel
- Department of Human Evolution, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Heinrich Mallison
- Zoological Museum, University of Hamburg, Hamburg, Germany
- Palaeo3D, Rain am Lech, Germany
| | - John R Hutchinson
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hatfield, UK
| |
Collapse
|
11
|
Brocklehurst RJ, Fahn-Lai P, Regnault S, Pierce SE. Musculoskeletal modeling of sprawling and parasagittal forelimbs provides insight into synapsid postural transition. iScience 2022; 25:103578. [PMID: 37609446 PMCID: PMC10441569 DOI: 10.1016/j.isci.2021.103578] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/14/2021] [Accepted: 12/03/2021] [Indexed: 11/30/2022] Open
Abstract
The sprawling-parasagittal postural shift was a major transition during synapsid evolution, underpinned by reorganization of the forelimb, and considered key to mammalian ecological diversity. Determining when and how this transition occurred in the fossil record is challenging owing to limited comparative data on extant species. Here, we built forelimb musculoskeletal models of three extant taxa that bracket sprawling-parasagittal postures-tegu lizard, echidna, and opossum-and tested the relationship between three-dimensional joint mobility, muscle action, and posture. Results demonstrate clear functional variation between postural grades, with the parasagittal opossum occupying a distinct region of pose space characterized by a highly retracted and depressed shoulder joint that emphasizes versatility and humeral elevation. Applying our data to the fossil record support trends of an increasingly retracted humerus and greater elevation muscle moment arms indicative of more parasagittal postures throughout synapsid evolution.
Collapse
Affiliation(s)
- Robert J. Brocklehurst
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 01239, USA
| | - Philip Fahn-Lai
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 01239, USA
- Concord Field Station and Department of Organismic and Evolutionary Biology, Harvard University, Bedford, MA01730, USA
| | - Sophie Regnault
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 01239, USA
- Institute of Biological, Environment & Rural Sciences, Aberystwyth University, Aberystwyth, CeredigionSY23 3DA, UK
| | - Stephanie E. Pierce
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 01239, USA
| |
Collapse
|
12
|
Bishop PJ, Wright MA, Pierce SE. Whole-limb scaling of muscle mass and force-generating capacity in amniotes. PeerJ 2021; 9:e12574. [PMID: 34909284 PMCID: PMC8638577 DOI: 10.7717/peerj.12574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/09/2021] [Indexed: 11/20/2022] Open
Abstract
Skeletal muscle mass, architecture and force-generating capacity are well known to scale with body size in animals, both throughout ontogeny and across species. Investigations of limb muscle scaling in terrestrial amniotes typically focus on individual muscles within select clades, but here this question was examined at the level of the whole limb across amniotes generally. In particular, the present study explored how muscle mass, force-generating capacity (measured by physiological cross-sectional area) and internal architecture (fascicle length) scales in the fore- and hindlimbs of extant mammals, non-avian saurians (‘reptiles’) and bipeds (birds and humans). Sixty species spanning almost five orders of magnitude in body mass were investigated, comprising previously published architectural data and new data obtained via dissections of the opossum Didelphis virginiana and the tegu lizard Salvator merianae. Phylogenetic generalized least squares was used to determine allometric scaling slopes (exponents) and intercepts, to assess whether patterns previously reported for individual muscles or functional groups were retained at the level of the whole limb, and to test whether mammals, reptiles and bipeds followed different allometric trajectories. In general, patterns of scaling observed in individual muscles were also observed in the whole limb. Reptiles generally have proportionately lower muscle mass and force-generating capacity compared to mammals, especially at larger body size, and bipeds exhibit strong to extreme positive allometry in the distal hindlimb. Remarkably, when muscle mass was accounted for in analyses of muscle force-generating capacity, reptiles, mammals and bipeds almost ubiquitously followed a single common scaling pattern, implying that differences in whole-limb force-generating capacity are principally driven by differences in muscle mass, not internal architecture. In addition to providing a novel perspective on skeletal muscle allometry in animals, the new dataset assembled was used to generate pan-amniote statistical relationships that can be used to predict muscle mass or force-generating capacity in extinct amniotes, helping to inform future reconstructions of musculoskeletal function in the fossil record.
Collapse
Affiliation(s)
- Peter J Bishop
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology,Harvard University, Cambridge, Massachusetts, United States of America.,Geosciences Program, Queensland Museum, Brisbane, Queensland, Australia
| | - Mark A Wright
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology,Harvard University, Cambridge, Massachusetts, United States of America
| | - Stephanie E Pierce
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology,Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
13
|
Regnault S, Fahn-Lai P, Pierce SE. Validation of an Echidna Forelimb Musculoskeletal Model Using XROMM and diceCT. Front Bioeng Biotechnol 2021; 9:751518. [PMID: 34820362 PMCID: PMC8606742 DOI: 10.3389/fbioe.2021.751518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
In evolutionary biomechanics, musculoskeletal computer models of extant and extinct taxa are often used to estimate joint range of motion (ROM) and muscle moment arms (MMAs), two parameters which form the basis of functional inferences. However, relatively few experimental studies have been performed to validate model outputs. Previously, we built a model of the short-beaked echidna (Tachyglossus aculeatus) forelimb using a traditional modelling workflow, and in this study we evaluate its behaviour and outputs using experimental data. The echidna is an unusual animal representing an edge-case for model validation: it uses a unique form of sprawling locomotion, and possesses a suite of derived anatomical features, in addition to other features reminiscent of extinct early relatives of mammals. Here we use diffusible iodine-based contrast-enhanced computed tomography (diceCT) alongside digital and traditional dissection to evaluate muscle attachments, modelled muscle paths, and the effects of model alterations on the MMA outputs. We use X-ray Reconstruction of Moving Morphology (XROMM) to compare ex vivo joint ROM to model estimates based on osteological limits predicted via single-axis rotation, and to calculate experimental MMAs from implanted muscles using a novel geometric method. We also add additional levels of model detail, in the form of muscle architecture, to evaluate how muscle torque might alter the inferences made from MMAs alone, as is typical in evolutionary studies. Our study identifies several key findings that can be applied to future models. 1) A light-touch approach to model building can generate reasonably accurate muscle paths, and small alterations in attachment site seem to have minimal effects on model output. 2) Simultaneous movement through multiple degrees of freedom, including rotations and translation at joints, are necessary to ensure full joint ROM is captured; however, single-axis ROM can provide a reasonable approximation of mobility depending on the modelling objectives. 3) Our geometric method of calculating MMAs is consistent with model-predicted MMAs calculated via partial velocity, and is a potentially useful tool for others to create and validate musculoskeletal models. 4) Inclusion of muscle architecture data can change some functional inferences, but in many cases reinforced conclusions based on MMA alone.
Collapse
Affiliation(s)
- Sophie Regnault
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
- Institute of Biological, Environment and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Philip Fahn-Lai
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
- Concord Field Station and Department of Organismic and Evolutionary Biology, Harvard University, Bedford, MA, United States
| | - Stephanie E. Pierce
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
| |
Collapse
|
14
|
Howenstine AO, Sadier A, Anthwal N, Lau CL, Sears KE. Non-model systems in mammalian forelimb evo-devo. Curr Opin Genet Dev 2021; 69:65-71. [PMID: 33684847 PMCID: PMC8364859 DOI: 10.1016/j.gde.2021.01.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 01/09/2023]
Abstract
Mammal forelimbs are highly diverse, ranging from the elongated wing of a bat to the stout limb of the mole. The mammal forelimb has been a long-standing system for the study of early developmental patterning, proportional variation, shape change, and the reduction of elements. However, most of this work has been performed in mice, which neglects the wide variation present across mammal forelimbs. This review emphasizes the critical role of non-model systems in limb evo-devo and highlights new emerging models and their potential. We discuss the role of gene networks in limb evolution, and touch on functional analyses that lay the groundwork for further developmental studies. Mammal limb evo-devo is a rich field, and here we aim to synthesize the findings of key recent works and the questions to which they lead.
Collapse
Affiliation(s)
- Aidan O Howenstine
- Department of Ecology and Evolutionary Biology, University of California at Los Angeles, Los Angeles, CA, 90095, United States
| | - Alexa Sadier
- Department of Ecology and Evolutionary Biology, University of California at Los Angeles, Los Angeles, CA, 90095, United States
| | - Neal Anthwal
- Department of Ecology and Evolutionary Biology, University of California at Los Angeles, Los Angeles, CA, 90095, United States; Centre for Craniofacial and Regenerative Biology, King's CollegeLondon, 27th Floor Guy's Tower, London, SE1 9RT, UK
| | - Clive Lf Lau
- Department of Ecology and Evolutionary Biology, University of California at Los Angeles, Los Angeles, CA, 90095, United States
| | - Karen E Sears
- Department of Ecology and Evolutionary Biology, University of California at Los Angeles, Los Angeles, CA, 90095, United States.
| |
Collapse
|