1
|
Martens LL, Brown RA, Faillace ACL, Berger A, Smith RLJ, Bertok K, Humphries L, Lassiter A, Hartstone-Rose A. The Effects of Onychectomy (Declawing) on Forearm and Leg Myology in a Kinkajou ( Potos flavus). Animals (Basel) 2024; 14:2774. [PMID: 39409723 PMCID: PMC11475305 DOI: 10.3390/ani14192774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/20/2024] Open
Abstract
Recently, onychectomy, the "declaw" surgery in which all or part of the distal phalanges are removed, has been shown to have significant effects on the forearm muscles of felids. While this surgery should clearly affect the limb muscles (especially those that insert on the removed or modified bone), these effects have not been studied beyond felids or in the hindlimb. To that end, we herein evaluated the muscle architecture of a kinkajou (Potos flavus) that was declawed on all four of its limbs and compared its anatomy to that of intact specimens and the felid findings. As expected, some of the declawed kinkajou's muscles were substantially different from those of the intact specimens, and as was seen in felids, its digital muscles appear to have been weaker. However, unlike in the felids, the declawed kinkajou had relatively larger forearm muscles. Also, contrary to expectation, the leg muscles of the declawed kinkajou were not substantially different, perhaps reflecting important differences in limb use. Future analyses should examine this anatomy in other declawed kinkajou specimens and also look at the effects of this surgery in other taxa, for instance, non-arboreal relatives of the kinkajou as well as other arboreal taxa.
Collapse
Affiliation(s)
- Lara L. Martens
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA; (L.L.M.); (R.A.B.); (A.C.L.F.); (A.B.); (R.L.J.S.)
| | - Reece A. Brown
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA; (L.L.M.); (R.A.B.); (A.C.L.F.); (A.B.); (R.L.J.S.)
| | - Ana Carolina Lourenço Faillace
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA; (L.L.M.); (R.A.B.); (A.C.L.F.); (A.B.); (R.L.J.S.)
- Wild Animal Anatomy Research Laboratory, School of Agricultural Science and Veterinary Medicine, University of Brasília, Brasília CEP 70636-200, Brazil
| | - Arin Berger
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA; (L.L.M.); (R.A.B.); (A.C.L.F.); (A.B.); (R.L.J.S.)
| | - Rachel L. J. Smith
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA; (L.L.M.); (R.A.B.); (A.C.L.F.); (A.B.); (R.L.J.S.)
| | - Kathryn Bertok
- Carolina Tiger Rescue, Pittsboro, NC 27312, USA; (K.B.); (L.H.); (A.L.)
| | - Lauren Humphries
- Carolina Tiger Rescue, Pittsboro, NC 27312, USA; (K.B.); (L.H.); (A.L.)
| | - Angela Lassiter
- Carolina Tiger Rescue, Pittsboro, NC 27312, USA; (K.B.); (L.H.); (A.L.)
| | - Adam Hartstone-Rose
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA; (L.L.M.); (R.A.B.); (A.C.L.F.); (A.B.); (R.L.J.S.)
| |
Collapse
|
2
|
Gardin A, Salesa MJ, Siliceo G, Antón M, Pastor JF, de Bonis L. The hindlimb of Amphicynodon leptorhynchus from the lower Oligocene of the Quercy Phosphorites (France): Highlight of new climbing adaptations of this early arctoid. J MAMM EVOL 2022. [DOI: 10.1007/s10914-022-09621-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
3
|
Butcher MT, Morgan DM, Spainhower KB, Thomas DR, Chadwell BA, Avey‐Arroyo JA, Kennedy SP, Cliffe RN. Myology of the pelvic limb of the brown-throated three-toed sloth (Bradypus variegatus). J Anat 2022; 240:1048-1074. [PMID: 35037260 PMCID: PMC9119613 DOI: 10.1111/joa.13626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 12/20/2021] [Accepted: 12/30/2021] [Indexed: 12/01/2022] Open
Abstract
Tree sloths rely on their limb flexors for bodyweight support and joint stability during suspensory locomotion and posture. This study aims to describe the myology of three-toed sloths and identify limb muscle traits that indicate modification for suspensorial habit. The pelvic limbs of the brown-throated three-toed sloth (Bradypus variegatus) were dissected, muscle belly mass was recorded, and the structural arrangements of the muscles were documented and compared with the available myological accounts for sloths. Overall, the limb musculature is simplified by containing muscles with generally long and parallel fascicles. A number of specific and informative muscle traits are additionally observed in the pelvic limb of B. variegatus: well-developed hip flexors and hip extensors each displaying several fused bellies; massive knee flexors; two heads of the m. adductor longus and m. gracilis; robust digital flexors and flexor tendons; m. tibialis cranialis muscle complex originating from the tibia and fibula and containing a modified m. extensor digitorum I longus; appreciable muscle mass devoted to ankle flexion and hindfoot supination; only m. extensor digitorum brevis acts to extend the digits. Collectively, the findings for tree sloths emphasize muscle mass and organization for suspensory support namely by the hip flexors, knee flexors, and limb adductors, for which the latter two groups may stabilize suspensory postures by exerting appreciable medially-directed force on the substrate. Specializations in the distal limb are also apparent for sustained purchase of the substrate by forceful digital flexion coupled with strong ankle flexion and supination of the hind feet, which is permitted by the reorganization of several digital extensors. Moreover, the reduction or loss of other digital flexor and ab-adductor muscles marks a dramatic simplification of the intrinsic foot musculature in B. variegatus, the extent to which varies across extant species of two- and three-toed tree sloths and likely is related to substrate preference/use.
Collapse
Affiliation(s)
- Michael T. Butcher
- Department of Chemical, Biological and Forensic SciencesYoungstown State UniversityYoungstownOhioUSA
| | - Dakota M. Morgan
- Department of Chemical, Biological and Forensic SciencesYoungstown State UniversityYoungstownOhioUSA
| | - Kyle B. Spainhower
- Department of Chemical, Biological and Forensic SciencesYoungstown State UniversityYoungstownOhioUSA
| | - Dylan R. Thomas
- Department of Chemical, Biological and Forensic SciencesYoungstown State UniversityYoungstownOhioUSA
| | - Brad A. Chadwell
- Department of AnatomyIdaho College of Osteopathic MedicineMeridianIdahoUSA
| | | | - Sarah P. Kennedy
- Sloth Conservation FoundationPuerto Viejo de TalamancaLimonCosta Rica
| | - Rebecca N. Cliffe
- Sloth Conservation FoundationPuerto Viejo de TalamancaLimonCosta Rica
| |
Collapse
|