1
|
Hanis TM, Islam MA, Musa KI. Diagnostic Accuracy of Machine Learning Models on Mammography in Breast Cancer Classification: A Meta-Analysis. Diagnostics (Basel) 2022; 12:1643. [PMID: 35885548 PMCID: PMC9320089 DOI: 10.3390/diagnostics12071643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
In this meta-analysis, we aimed to estimate the diagnostic accuracy of machine learning models on digital mammograms and tomosynthesis in breast cancer classification and to assess the factors affecting its diagnostic accuracy. We searched for related studies in Web of Science, Scopus, PubMed, Google Scholar and Embase. The studies were screened in two stages to exclude the unrelated studies and duplicates. Finally, 36 studies containing 68 machine learning models were included in this meta-analysis. The area under the curve (AUC), hierarchical summary receiver operating characteristics (HSROC) curve, pooled sensitivity and pooled specificity were estimated using a bivariate Reitsma model. Overall AUC, pooled sensitivity and pooled specificity were 0.90 (95% CI: 0.85-0.90), 0.83 (95% CI: 0.78-0.87) and 0.84 (95% CI: 0.81-0.87), respectively. Additionally, the three significant covariates identified in this study were country (p = 0.003), source (p = 0.002) and classifier (p = 0.016). The type of data covariate was not statistically significant (p = 0.121). Additionally, Deeks' linear regression test indicated that there exists a publication bias in the included studies (p = 0.002). Thus, the results should be interpreted with caution.
Collapse
Affiliation(s)
- Tengku Muhammad Hanis
- Department of Community Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Md Asiful Islam
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, UK
| | - Kamarul Imran Musa
- Department of Community Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| |
Collapse
|
2
|
ElOuassif B, Idri A, Hosni M, Abran A. Classification techniques in breast cancer diagnosis: A systematic literature review. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING: IMAGING & VISUALIZATION 2021. [DOI: 10.1080/21681163.2020.1811159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Bouchra ElOuassif
- Department of Web and Mobile Engineering, Software Project Management Research Team, ENSIAS, Mohammed V University, Rabat, Morocco
| | - Ali Idri
- Department of Web and Mobile Engineering, Software Project Management Research Team, ENSIAS, Mohammed V University, Rabat, Morocco
| | - Mohamed Hosni
- Department of Web and Mobile Engineering, Software Project Management Research Team, ENSIAS, Mohammed V University, Rabat, Morocco
| | - Alain Abran
- Department of Software Engineering and Information Technology, Ecole De Technologie Supérieure, –university of Québec, Montreal, Canada
| |
Collapse
|
3
|
Shaikh TA, Ali R. An intelligent healthcare system for optimized breast cancer diagnosis using harmony search and simulated annealing (HS-SA) algorithm. INFORMATICS IN MEDICINE UNLOCKED 2020. [DOI: 10.1016/j.imu.2020.100408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
4
|
Abstract
Cancer, a disease of cells, causes cell growth which differs from normal cell growth ratio, this cell growth spreads in the human body and kills the body cells. Breast cancer, it’s a highly heterogeneous disease and western women commonly witness this. Mammography, a pre-screening X-ray based check is used to diagnose woman’s breast cancer. This basic test mode helps in identifying breast cancer at early stage and this early stage detection would support in recovering more number of women from this serious disease. Medical centres deputed highly skilled radiologists and they were given the responsibility of analysing this mammography results but still human errors are inevitable. An error frequency ratio is high when radiologists exhausted in their analysis task and leads variations in either observations ie., internal or external observation. Also, quality of the image plays vital role in Mammographic sensitivity and leads to variation. Several automation processes were tried in streamlining and standardising diagnosis analysis process and quality of breast cancer images were improved. This paper inducts a two way mode algorithm for grouping of breast cancer images to 1. benign (tumour growing, but not dangerous) and 2. malignant (cannot be controlled, it causes death) classes. Two-way mode data mining algorithms are used due to thinly dispersed distribution of abnormal mammograms. First type algorithm is k-means algorithm, which regroups the given data elements into clusters (ie., prioritized by the users). Second type algorithm is Support Vector Machine (SVM), which is used to identify the most suitable function which differentiates the members based on the training data.
Collapse
Affiliation(s)
- Sinthia P
- Department of EIE, Saveetha Engineering College, Chennai, India.
| | | |
Collapse
|
5
|
Wildeboer RR, Postema AW, Demi L, Kuenen MPJ, Wijkstra H, Mischi M. Multiparametric dynamic contrast-enhanced ultrasound imaging of prostate cancer. Eur Radiol 2017; 27:3226-3234. [PMID: 28004162 PMCID: PMC5491563 DOI: 10.1007/s00330-016-4693-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 11/28/2016] [Accepted: 12/01/2016] [Indexed: 12/29/2022]
Abstract
OBJECTIVES The aim of this study is to improve the accuracy of dynamic contrast-enhanced ultrasound (DCE-US) for prostate cancer (PCa) localization by means of a multiparametric approach. MATERIALS AND METHODS Thirteen different parameters related to either perfusion or dispersion were extracted pixel-by-pixel from 45 DCE-US recordings in 19 patients referred for radical prostatectomy. Multiparametric maps were retrospectively produced using a Gaussian mixture model algorithm. These were subsequently evaluated on their pixel-wise performance in classifying 43 benign and 42 malignant histopathologically confirmed regions of interest, using a prostate-based leave-one-out procedure. RESULTS The combination of the spatiotemporal correlation (r), mean transit time (μ), curve skewness (κ), and peak time (PT) yielded an accuracy of 81% ± 11%, which was higher than the best performing single parameters: r (73%), μ (72%), and wash-in time (72%). The negative predictive value increased to 83% ± 16% from 70%, 69% and 67%, respectively. Pixel inclusion based on the confidence level boosted these measures to 90% with half of the pixels excluded, but without disregarding any prostate or region. CONCLUSIONS Our results suggest multiparametric DCE-US analysis might be a useful diagnostic tool for PCa, possibly supporting future targeting of biopsies or therapy. Application in other types of cancer can also be foreseen. KEY POINTS • DCE-US can be used to extract both perfusion and dispersion-related parameters. • Multiparametric DCE-US performs better in detecting PCa than single-parametric DCE-US. • Multiparametric DCE-US might become a useful tool for PCa localization.
Collapse
Affiliation(s)
- Rogier R Wildeboer
- Laboratory of Biomedical Diagnostics, Department of Electrical Engineering, Eindhoven University of Technology, PO-Box 513, 5600 MB, Eindhoven, The Netherlands.
| | - Arnoud W Postema
- Department of Urology, Academic Medical Center University Hospital, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Libertario Demi
- Laboratory of Biomedical Diagnostics, Department of Electrical Engineering, Eindhoven University of Technology, PO-Box 513, 5600 MB, Eindhoven, The Netherlands
| | | | - Hessel Wijkstra
- Laboratory of Biomedical Diagnostics, Department of Electrical Engineering, Eindhoven University of Technology, PO-Box 513, 5600 MB, Eindhoven, The Netherlands
- Department of Urology, Academic Medical Center University Hospital, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Massimo Mischi
- Laboratory of Biomedical Diagnostics, Department of Electrical Engineering, Eindhoven University of Technology, PO-Box 513, 5600 MB, Eindhoven, The Netherlands
| |
Collapse
|
6
|
Isikli Esener I, Ergin S, Yuksel T. A New Feature Ensemble with a Multistage Classification Scheme for Breast Cancer Diagnosis. JOURNAL OF HEALTHCARE ENGINEERING 2017; 2017:3895164. [PMID: 29065592 PMCID: PMC5494793 DOI: 10.1155/2017/3895164] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/11/2017] [Accepted: 04/06/2017] [Indexed: 11/21/2022]
Abstract
A new and effective feature ensemble with a multistage classification is proposed to be implemented in a computer-aided diagnosis (CAD) system for breast cancer diagnosis. A publicly available mammogram image dataset collected during the Image Retrieval in Medical Applications (IRMA) project is utilized to verify the suggested feature ensemble and multistage classification. In achieving the CAD system, feature extraction is performed on the mammogram region of interest (ROI) images which are preprocessed by applying a histogram equalization followed by a nonlocal means filtering. The proposed feature ensemble is formed by concatenating the local configuration pattern-based, statistical, and frequency domain features. The classification process of these features is implemented in three cases: a one-stage study, a two-stage study, and a three-stage study. Eight well-known classifiers are used in all cases of this multistage classification scheme. Additionally, the results of the classifiers that provide the top three performances are combined via a majority voting technique to improve the recognition accuracy on both two- and three-stage studies. A maximum of 85.47%, 88.79%, and 93.52% classification accuracies are attained by the one-, two-, and three-stage studies, respectively. The proposed multistage classification scheme is more effective than the single-stage classification for breast cancer diagnosis.
Collapse
Affiliation(s)
- Idil Isikli Esener
- Department of Electrical Electronics Engineering, Bilecik Seyh Edebali University, 11210 Bilecik, Turkey
| | - Semih Ergin
- Department of Electrical Electronics Engineering, Eskisehir Osmangazi University, 26480 Eskisehir, Turkey
| | - Tolga Yuksel
- Department of Electrical Electronics Engineering, Bilecik Seyh Edebali University, 11210 Bilecik, Turkey
| |
Collapse
|
7
|
Application of Gabor wavelet and Locality Sensitive Discriminant Analysis for automated identification of breast cancer using digitized mammogram images. Appl Soft Comput 2016. [DOI: 10.1016/j.asoc.2016.04.036] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Ganesan K, Acharya RU, Chua CK, Min LC, Mathew B, Thomas AK. Decision support system for breast cancer detection using mammograms. Proc Inst Mech Eng H 2013; 227:721-32. [PMID: 23636749 DOI: 10.1177/0954411913480669] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mammograms are by far one of the most preferred methods of screening for breast cancer. Early detection of breast cancer can improve survival rates to a greater extent. Although the analysis and diagnosis of breast cancer are done by experienced radiologists, there is always the possibility of human error. Interobserver and intraobserver errors occur frequently in the analysis of medical images, given the high variability between every patient. Also, the sensitivity of mammographic screening varies with image quality and expertise of the radiologist. So, there is no golden standard for the screening process. To offset this variability and to standardize the diagnostic procedures, efforts are being made to develop automated techniques for diagnosis and grading of breast cancer images. This article presents a classification pipeline to improve the accuracy of differentiation between normal, benign, and malignant mammograms. Several features based on higher-order spectra, local binary pattern, Laws' texture energy, and discrete wavelet transform were extracted from mammograms. Feature selection techniques based on sequential forward, backward, plus-l-takeaway-r, individual, and branch-and-bound selections using the Mahalanobis distance criterion were used to rank the features and find classification accuracies for combination of several features based on the ranking. Six classifiers were used, namely, decision tree classifier, fisher classifier, linear discriminant classifier, nearest mean classifier, Parzen classifier, and support vector machine classifier. We evaluated our proposed methodology with 300 mammograms obtained from the Digital Database for Screening Mammography and 300 mammograms from the Singapore Anti-Tuberculosis Association CommHealth database. Sensitivity, specificity, and accuracy values were used to compare the performances of the classifiers. Our results show that the decision tree classifier demonstrated an excellent performance compared to other classifiers with classification accuracy, sensitivity, and specificity of 91% for the Digital Database for Screening Mammography database and 96.8% for the Singapore Anti-Tuberculosis Association CommHealth database.
Collapse
|
9
|
A Swarm Optimized Neural Network System for Classification of Microcalcification in Mammograms. J Med Syst 2011; 36:3051-61. [PMID: 21947904 DOI: 10.1007/s10916-011-9781-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 09/13/2011] [Indexed: 10/17/2022]
|
10
|
Abstract
Oncology research has traditionally been conducted using techniques from the biological sciences. The new field of computational oncology has forged a new relationship between the physical sciences and oncology to further advance research. By applying physics and mathematics to oncologic problems, new insights will emerge into the pathogenesis and treatment of malignancies. One major area of investigation in computational oncology centers around the acquisition and analysis of data, using improved computing hardware and software. Large databases of cellular pathways are being analyzed to understand the interrelationship among complex biological processes. Computer-aided detection is being applied to the analysis of routine imaging data including mammography and chest imaging to improve the accuracy and detection rate for population screening. The second major area of investigation uses computers to construct sophisticated mathematical models of individual cancer cells as well as larger systems using partial differential equations. These models are further refined with clinically available information to more accurately reflect living systems. One of the major obstacles in the partnership between physical scientists and the oncology community is communications. Standard ways to convey information must be developed. Future progress in computational oncology will depend on close collaboration between clinicians and investigators to further the understanding of cancer using these new approaches.
Collapse
Affiliation(s)
- Alan T Lefor
- Jichi Medical University, Yakushiji 3311-1 Shimotsuke City, Tochigi 329-0498, Japan.
| |
Collapse
|
11
|
Diagnosing Breast Masses in Digital Mammography Using Feature Selection and Ensemble Methods. J Med Syst 2010; 36:569-77. [DOI: 10.1007/s10916-010-9518-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 04/23/2010] [Indexed: 11/25/2022]
|
12
|
An Improved Medical Decision Support System to Identify the Breast Cancer Using Mammogram. J Med Syst 2010; 36:79-91. [DOI: 10.1007/s10916-010-9448-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2009] [Accepted: 02/11/2010] [Indexed: 10/19/2022]
|