1
|
Hu W, Ji B, Gao K. A Method for the Spatial Interpolation of EEG Signals Based on the Bidirectional Long Short-Term Memory Network. SENSORS (BASEL, SWITZERLAND) 2024; 24:5215. [PMID: 39204910 PMCID: PMC11359714 DOI: 10.3390/s24165215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
The precision of electroencephalograms (EEGs) significantly impacts the performance of brain-computer interfaces (BCI). Currently, the majority of research into BCI technology gives priority to lightweight design and a reduced electrode count to make it more suitable for application in wearable environments. This paper introduces a deep learning-based time series bidirectional (BiLSTM) network that is designed to capture the inherent characteristics of EEG channels obtained from neighboring electrodes. It aims to predict the EEG data time series and facilitate the conversion process from low-density EEG signals to high-density EEG signals. BiLSTM pays more attention to the dependencies in time series data rather than mathematical maps, and the root mean square error can be effectively restricted to below 0.4μV, which is less than half the error in traditional methods. After expanding the BCI Competition III 3a dataset from 18 channels to 60 channels, we conducted classification experiments on four types of motor imagery tasks. Compared to the original low-density EEG signals (18 channels), the classification accuracy was around 82%, an increase of about 20%. When juxtaposed with real high-density signals, the increment in the error rate remained below 5%. The expansion of the EEG channels showed a substantial and notable improvement compared with the original low-density signals.
Collapse
Affiliation(s)
- Wenlong Hu
- The College of Information Science and Technology, Donghua University, Shanghai 200051, China
| | - Bowen Ji
- The Unmanned System Research Institute, Northwestern Polytechnical University, Xi'an 710060, China
| | - Kunpeng Gao
- The College of Information Science and Technology, Donghua University, Shanghai 200051, China
| |
Collapse
|
2
|
Sireesha V, Tallapragada VVS, Naresh M, Pradeep Kumar GV. EEG-BCI-based motor imagery classification using double attention convolutional network. Comput Methods Biomech Biomed Engin 2024:1-20. [PMID: 38164118 DOI: 10.1080/10255842.2023.2298369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024]
Abstract
This article aims to improve and diversify signal processing techniques to execute a brain-computer interface (BCI) based on neurological phenomena observed when performing motor tasks using motor imagery (MI). The noise present in the original data, such as intermodulation noise, crosstalk, and other unwanted noise, is removed by Modify Least Mean Square (M-LMS) in the pre-processing stage. Traditional LMSs were unable to extract all the noise from the images. After pre-processing, the required features, such as statistical features, entropy features, etc., were extracted using Common Spatial Pattern (CSP) and Pearson's Correlation Coefficient (PCC) instead of the traditional single feature extraction model. The arithmetic optimization algorithm cannot select the features accurately and fails to reduce the feature dimensionality of the data. Thus, an Extended Arithmetic operation optimization (ExAo) algorithm is used to select the most significant attributes from the extracted features. The proposed model uses Double Attention Convolutional Neural Networks (DAttnConvNet) to classify the types of EEG signals based on optimal feature selection. Here, the attention mechanism is used to select and optimize the features to improve the classification accuracy and efficiency of the model. In EEG motor imagery datasets, the proposed model has been analyzed under class, which obtained an accuracy of 99.98% in class Baseline (B), 99.82% in class Imagined movement of a right fist (R) and 99.61% in class Imagined movement of both fists (RL). In the EEG dataset, the proposed model can obtain a high accuracy of 97.94% compared to EEG datasets of other models.
Collapse
Affiliation(s)
- V Sireesha
- Department of Computer Science and Engineering, School of Technology, GITAM University, Hyderabad, India
| | | | - M Naresh
- Department of ECE, Matrusri Engineering College, Saidabad, Hyderabad, India
| | - G V Pradeep Kumar
- Department of ECE, Chaitanya Bharathi Institute of Technology, Hyderabad, India
| |
Collapse
|
3
|
Çetin E, Bilgin S, Bilgin G. A novel wearable ERP-based BCI approach to explicate hunger necessity. Neurosci Lett 2024; 818:137573. [PMID: 38036086 DOI: 10.1016/j.neulet.2023.137573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
This study aimed to design a Brain-Computer Interface system to detect people's hunger status. EEG signals were recorded in various scenarios to create a database. We extracted the time-domain and frequency-domain features from these signals and applied them to the inputs of various Machine Learning algorithms. We compared the classification performances and reached the best-performing algorithm. The highest success score of 97.62% was achieved using the Multilayer Perceptron Neural Network algorithm in Event-Related Potential analysis.
Collapse
Affiliation(s)
- Egehan Çetin
- Distance Education Application and Research Center, Burdur Mehmet Akif Ersoy University, Burdur, Turkey.
| | - Süleyman Bilgin
- Department of Electrical & Electronics Engineering, Faculty of Engineering, Akdeniz University, Antalya, Turkey.
| | - Gürkan Bilgin
- Department of Electrical & Electronics Engineering, Faculty of Engineering and Architecture, Burdur Mehmet Akif Ersoy University, Burdur, Turkey.
| |
Collapse
|
4
|
Zhang J, Li J, Huang Z, Huang D, Yu H, Li Z. Recent Progress in Wearable Brain-Computer Interface (BCI) Devices Based on Electroencephalogram (EEG) for Medical Applications: A Review. HEALTH DATA SCIENCE 2023; 3:0096. [PMID: 38487198 PMCID: PMC10880169 DOI: 10.34133/hds.0096] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 10/19/2023] [Indexed: 03/17/2024]
Abstract
Importance: Brain-computer interface (BCI) decodes and converts brain signals into machine instructions to interoperate with the external world. However, limited by the implantation risks of invasive BCIs and the operational complexity of conventional noninvasive BCIs, applications of BCIs are mainly used in laboratory or clinical environments, which are not conducive to the daily use of BCI devices. With the increasing demand for intelligent medical care, the development of wearable BCI systems is necessary. Highlights: Based on the scalp-electroencephalogram (EEG), forehead-EEG, and ear-EEG, the state-of-the-art wearable BCI devices for disease management and patient assistance are reviewed. This paper focuses on the EEG acquisition equipment of the novel wearable BCI devices and summarizes the development direction of wearable EEG-based BCI devices. Conclusions: BCI devices play an essential role in the medical field. This review briefly summarizes novel wearable EEG-based BCIs applied in the medical field and the latest progress in related technologies, emphasizing its potential to help doctors, patients, and caregivers better understand and utilize BCI devices.
Collapse
Affiliation(s)
- Jiayan Zhang
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing, China
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits,
Peking University, Beijing, China
| | - Junshi Li
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing, China
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits,
Peking University, Beijing, China
| | - Zhe Huang
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing, China
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits,
Peking University, Beijing, China
- Shenzhen Graduate School,
Peking University, Shenzhen, China
| | - Dong Huang
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing, China
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits,
Peking University, Beijing, China
- School of Electronics,
Peking University, Beijing, China
| | - Huaiqiang Yu
- Sichuan Institute of Piezoelectric and Acousto-optic Technology, Chongqing, China
| | - Zhihong Li
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing, China
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits,
Peking University, Beijing, China
| |
Collapse
|
5
|
Arpaia P, Coyle D, Esposito A, Natalizio A, Parvis M, Pesola M, Vallefuoco E. Paving the Way for Motor Imagery-Based Tele-Rehabilitation through a Fully Wearable BCI System. SENSORS (BASEL, SWITZERLAND) 2023; 23:5836. [PMID: 37447686 DOI: 10.3390/s23135836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/08/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023]
Abstract
The present study introduces a brain-computer interface designed and prototyped to be wearable and usable in daily life. Eight dry electroencephalographic sensors were adopted to acquire the brain activity associated with motor imagery. Multimodal feedback in extended reality was exploited to improve the online detection of neurological phenomena. Twenty-seven healthy subjects used the proposed system in five sessions to investigate the effects of feedback on motor imagery. The sample was divided into two equal-sized groups: a "neurofeedback" group, which performed motor imagery while receiving feedback, and a "control" group, which performed motor imagery with no feedback. Questionnaires were administered to participants aiming to investigate the usability of the proposed system and an individual's ability to imagine movements. The highest mean classification accuracy across the subjects of the control group was about 62% with 3% associated type A uncertainty, and it was 69% with 3% uncertainty for the neurofeedback group. Moreover, the results in some cases were significantly higher for the neurofeedback group. The perceived usability by all participants was high. Overall, the study aimed at highlighting the advantages and the pitfalls of using a wearable brain-computer interface with dry sensors. Notably, this technology can be adopted for safe and economically viable tele-rehabilitation.
Collapse
Affiliation(s)
- Pasquale Arpaia
- Department of Electrical Engineering and Information Technology (DIETI), Università Degli Studi di Napoli Federico II, 80125 Naples, Italy
- Augmented Reality for Health Monitoring Laboratory (ARHeMLab), Università Degli Studi di Napoli Federico II, 80125 Naples, Italy
- Centro Interdipartimentale di Ricerca in Management Sanitario e Innovazione in Sanità (CIRMIS), Università Degli Studi di Napoli Federico II, 80125 Naples, Italy
| | - Damien Coyle
- Institute for the Augmented Human, University of Bath, Bath BA2 7AY, UK
- Intelligent Systems Research Centre, University of Ulster, Derry BT48 7JL, UK
| | - Antonio Esposito
- Augmented Reality for Health Monitoring Laboratory (ARHeMLab), Università Degli Studi di Napoli Federico II, 80125 Naples, Italy
| | - Angela Natalizio
- Augmented Reality for Health Monitoring Laboratory (ARHeMLab), Università Degli Studi di Napoli Federico II, 80125 Naples, Italy
- Department of Electronics and Telecommunications (DET), Politecnico di Torino, 10129 Turin, Italy
| | - Marco Parvis
- Department of Electronics and Telecommunications (DET), Politecnico di Torino, 10129 Turin, Italy
| | - Marisa Pesola
- Department of Electrical Engineering and Information Technology (DIETI), Università Degli Studi di Napoli Federico II, 80125 Naples, Italy
- Augmented Reality for Health Monitoring Laboratory (ARHeMLab), Università Degli Studi di Napoli Federico II, 80125 Naples, Italy
| | - Ersilia Vallefuoco
- Augmented Reality for Health Monitoring Laboratory (ARHeMLab), Università Degli Studi di Napoli Federico II, 80125 Naples, Italy
- Department of Psychology and Cognitive Science, University of Trento, 38122 Rovereto, Italy
| |
Collapse
|
6
|
Saibene A, Caglioni M, Corchs S, Gasparini F. EEG-Based BCIs on Motor Imagery Paradigm Using Wearable Technologies: A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:2798. [PMID: 36905004 PMCID: PMC10007053 DOI: 10.3390/s23052798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
In recent decades, the automatic recognition and interpretation of brain waves acquired by electroencephalographic (EEG) technologies have undergone remarkable growth, leading to a consequent rapid development of brain-computer interfaces (BCIs). EEG-based BCIs are non-invasive systems that allow communication between a human being and an external device interpreting brain activity directly. Thanks to the advances in neurotechnologies, and especially in the field of wearable devices, BCIs are now also employed outside medical and clinical applications. Within this context, this paper proposes a systematic review of EEG-based BCIs, focusing on one of the most promising paradigms based on motor imagery (MI) and limiting the analysis to applications that adopt wearable devices. This review aims to evaluate the maturity levels of these systems, both from the technological and computational points of view. The selection of papers has been performed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), leading to 84 publications considered in the last ten years (from 2012 to 2022). Besides technological and computational aspects, this review also aims to systematically list experimental paradigms and available datasets in order to identify benchmarks and guidelines for the development of new applications and computational models.
Collapse
Affiliation(s)
- Aurora Saibene
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Viale Sarca 336, 20126 Milano, Italy
- NeuroMI, Milan Center for Neuroscience, Piazza dell’Ateneo Nuovo 1, 20126 Milano, Italy
| | - Mirko Caglioni
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Viale Sarca 336, 20126 Milano, Italy
| | - Silvia Corchs
- NeuroMI, Milan Center for Neuroscience, Piazza dell’Ateneo Nuovo 1, 20126 Milano, Italy
- Department of Theoretical and Applied Sciences, University of Insubria, Via J. H. Dunant 3, 21100 Varese, Italy
| | - Francesca Gasparini
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Viale Sarca 336, 20126 Milano, Italy
- NeuroMI, Milan Center for Neuroscience, Piazza dell’Ateneo Nuovo 1, 20126 Milano, Italy
| |
Collapse
|
7
|
Liu Q, Yang L, Zhang Z, Yang H, Zhang Y, Wu J. The Feature, Performance, and Prospect of Advanced Electrodes for Electroencephalogram. BIOSENSORS 2023; 13:bios13010101. [PMID: 36671936 PMCID: PMC9855417 DOI: 10.3390/bios13010101] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 05/12/2023]
Abstract
Recently, advanced electrodes have been developed, such as semi-dry, dry contact, dry non-contact, and microneedle array electrodes. They can overcome the issues of wet electrodes and maintain high signal quality. However, the variations in these electrodes are still unclear and not explained, and there is still confusion regarding the feasibility of electrodes for different application scenarios. In this review, the physical features and electroencephalogram (EEG) signal performances of these advanced EEG electrodes are introduced in view of the differences in contact between the skin and electrodes. Specifically, contact features, biofeatures, impedance, signal quality, and artifacts are discussed. The application scenarios and prospects of different types of EEG electrodes are also elucidated.
Collapse
|
8
|
Russo C, Senese VP. Functional near-infrared spectroscopy is a useful tool for multi-perspective psychobiological study of neurophysiological correlates of parenting behaviour. Eur J Neurosci 2023; 57:258-284. [PMID: 36485015 DOI: 10.1111/ejn.15890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022]
Abstract
The quality of the relationship between caregiver and child has long-term effects on the cognitive and socio-emotional development of children. A process involved in human parenting is the bio-behavioural synchrony that occurs between the partners in the relationship during interaction. Through interaction, bio-behavioural synchronicity allows the adaptation of the physiological systems of the parent to those of the child and promotes the positive development and modelling of the child's social brain. The role of bio-behavioural synchrony in building social bonds could be investigated using functional near-infrared spectroscopy (fNIRS). In this paper we have (a) highlighted the importance of the quality of the caregiver-child relationship for the child's cognitive and socio-emotional development, as well as the relevance of infantile stimuli in the activation of parenting behaviour; (b) discussed the tools used in the study of the neurophysiological substrates of the parental response; (c) proposed fNIRS as a particularly suitable tool for the study of parental responses; and (d) underlined the need for a multi-systemic psychobiological approach to understand the mechanisms that regulate caregiver-child interactions and their bio-behavioural synchrony. We propose to adopt a multi-system psychobiological approach to the study of parental behaviour and social interaction.
Collapse
Affiliation(s)
- Carmela Russo
- Psychometric Laboratory, Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Vincenzo Paolo Senese
- Psychometric Laboratory, Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| |
Collapse
|
9
|
Qiu JM, Casey MA, Diamond SG. Assessing Feedback Response With a Wearable Electroencephalography System. Front Hum Neurosci 2019; 13:258. [PMID: 31402858 PMCID: PMC6669939 DOI: 10.3389/fnhum.2019.00258] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/10/2019] [Indexed: 01/06/2023] Open
Abstract
Background: Event related potential (ERP) components, such as P3, N2, and FRN, are potential metrics for assessing feedback response as a form of performance monitoring. Most research studies investigate these ERP components using clinical or research-grade electroencephalography (EEG) systems. Wearable EEGs, which are an affordable alternative, have the potential to assess feedback response using ERPs but have not been sufficiently evaluated. Feedback-related ERPs also have not been scientifically evaluated in interactive settings that are similar to daily computer use. In this study, a consumer-grade wearable EEG system was assessed for its feasibility to collect feedback-related ERPs through an interactive software module that provided an environment in which users were permitted to navigate freely within the program to make decisions. Methods: The recording hardware, which costs < $1,500 in total, incorporated the OpenBCI Cyton Board with Daisy chain, a consumer-grade EEG system that costs $949 USD. Seventeen participants interacted with an oddball paradigm and an interactive module designed to elicit feedback-related ERPs. The features of interests for the oddball paradigm were the P3 and N2 components. The features of interests for the interactive module were the P3, N2, and FRN components elicited in response to positive, neutral, and two types of negative feedback. The FRN was calculated by subtracting the positive feedback response from the negative feedback responses. Results: The P3 and N2 components of the oddball paradigm indicated statistically significant differences between infrequent targets and frequent targets which is in line with current literature. The P3 and N2 components elicited in the interactive module indicated statistically significant differences between positive, neutral, and negative feedback responses. There were no significant differences between the FRN types and significant interactions with channel group and FRN type. Conclusion: The OpenBCI Cyton, after some modifications, shows potential for eliciting and assessing P3, N2, and FRN components, which are important indicators for performance monitoring, in an interactive setting.
Collapse
Affiliation(s)
- Jenny M. Qiu
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Michael A. Casey
- Department of Music, Dartmouth College, Hanover, NH, United States
| | - Solomon G. Diamond
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
10
|
Kim J, Lee J, Han C, Park K. An Instant Donning Multi-Channel EEG Headset (with Comb-Shaped Dry Electrodes) and BCI Applications. SENSORS (BASEL, SWITZERLAND) 2019; 19:E1537. [PMID: 30934931 PMCID: PMC6479764 DOI: 10.3390/s19071537] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/23/2019] [Accepted: 03/27/2019] [Indexed: 12/03/2022]
Abstract
We developed a new type of electroencephalogram (EEG) headset system with comb-shaped electrodes that enables the wearer to quickly don and utilize it in daily life. Two models that can measure EEG signals using up to eight channels have been implemented. The electrodes implemented in the headsets are similar to a comb and are placed quickly by wiping the hair (as done with a comb) using the headset. To verify this headset system, donning time was measured and three brain computer interface (BCI) application experiments were conducted. Alpha rhythm-based, steady-state visual evoked potential (SSVEP)-based, and auditory steady state response (ASSR)-based BCI systems were adopted for the validation experiments. Four subjects participated and ten trials were repeated in the donning experiment. The results of the validation experiments show that reliable EEG signal measurement is possible immediately after donning the headsets without any preparation. It took approximately 10 s for healthy subjects to don the headsets, including an earclip with reference and ground electrodes. The results of alpha rhythm-based BCI showed 100% accuracy. Furthermore, the results of SSVEP-based and ASSR-based BCI experiments indicate that performance is sufficient for BCI applications; 95.7% and 76.0% accuracies were obtained, respectively. The results of BCI paradigm experiments indicate that the new headset type is feasible for various BCI applications.
Collapse
Affiliation(s)
- Jeehoon Kim
- Interdisciplinary Program of Bioengineering, Seoul National University, Seoul 03080, Korea.
| | - Jeongsu Lee
- Mobile Communication Business, Samsung Electronics Co. Ltd.; 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Korea.
| | - Chungmin Han
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA.
| | - Kwangsuk Park
- Interdisciplinary Program of Bioengineering, Seoul National University, Seoul 03080, Korea.
- Department of Biomedical Engineering, College of Medicine, Seoul National University, Seoul 03080, Korea.
| |
Collapse
|
11
|
Lau-Zhu A, Lau MPH, McLoughlin G. Mobile EEG in research on neurodevelopmental disorders: Opportunities and challenges. Dev Cogn Neurosci 2019; 36:100635. [PMID: 30877927 PMCID: PMC6534774 DOI: 10.1016/j.dcn.2019.100635] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 11/23/2022] Open
Abstract
Mobile electroencephalography (mobile EEG) represents a next-generation neuroscientific technology – to study real-time brain activity – that is relatively inexpensive, non-invasive and portable. Mobile EEG leverages state-of-the-art hardware alongside established advantages of traditional EEG and recent advances in signal processing. In this review, we propose that mobile EEG could open unprecedented possibilities for studying neurodevelopmental disorders. We first present a brief overview of recent developments in mobile EEG technologies, emphasising the proliferation of studies in several neuroscientific domains. As these developments have yet to be exploited by neurodevelopmentalists, we then identify three research opportunities: 1) increase in the ease and flexibility of brain data acquisition in neurodevelopmental populations; 2) integration into powerful developmentally-informative research designs; 3) development of innovative non-stationary EEG-based paradigms. Critically, we address key challenges that should be considered to fully realise the potential of mobile EEG for neurodevelopmental research and for understanding developmental psychopathology more broadly, and suggest future research directions.
Collapse
Affiliation(s)
- Alex Lau-Zhu
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
| | - Michael P H Lau
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Gráinne McLoughlin
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
12
|
An Automatic Channel Selection Approach for ICA-Based Motor Imagery Brain Computer Interface. J Med Syst 2018; 42:253. [PMID: 30402801 DOI: 10.1007/s10916-018-1106-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/18/2018] [Indexed: 11/26/2022]
Abstract
Independent component analysis (ICA) is a potential spatial filtering method for the implementation of motor imagery brain-computer interface (MIBCI). However, ICA-based MIBCI (ICA-MIBCI) is sensitive to electroencephalogram (EEG) channels and the quality of the training data, which are two crucial factors affecting the stability and classification performance of ICA-MIBCI. To address these problems, this paper is mainly focused on the investigation of EEG channel optimization. As a reference, we constructed a single-trial-based ICA-MIBCI system with commonly used channels and common spatial pattern-based MIBCI (CSP-MIBCI). To minimize the impact of artifacts on EEG channel optimization, a data-quality evaluation method, named "self-testing" in this paper, was used in a single-trial-based ICA-MIBCI system to evaluate the quality of single trials in each dataset; the resulting self-testing accuracies were used for the selection of high-quality trials. Given several candidate channel configurations, ICA filters were calculated using selected high-quality trials and applied to the corresponding ICA-MIBCI implementation. Optimal channels for each dataset were assessed and selected according to the self-testing results related to various candidate configurations. Forty-eight MI datasets of six subjects were employed in this study to validate the proposed methods. Experimental results revealed that the average classification accuracy of the optimal channels yielded a relative increment of 2.8% and 8.5% during self-testing, 14.4% and 9.5% during session-to-session transfer, and 36.2% and 26.7% during subject-to-subject transfer compared to CSP-MIBCI and ICA-MIBCI with fixed the channel configuration. This work indicates that the proposed methods can efficiently improve the practical feasibility of ICA-MIBCI.
Collapse
|
13
|
Xing X, Wang Y, Pei W, Guo X, Liu Z, Wang F, Ming G, Zhao H, Gui Q, Chen H. A High-Speed SSVEP-Based BCI Using Dry EEG Electrodes. Sci Rep 2018; 8:14708. [PMID: 30279463 PMCID: PMC6168577 DOI: 10.1038/s41598-018-32283-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 07/06/2018] [Indexed: 11/24/2022] Open
Abstract
A high-speed steady-state visual evoked potentials (SSVEP)-based brain-computer interface (BCI) system using dry EEG electrodes was demonstrated in this study. The dry electrode was fabricated in our laboratory. It was designed as claw-like structure with a diameter of 14 mm, featuring 8 small fingers of 6 mm length and 2 mm diameter. The structure and elasticity can help the fingers pass through the hair and contact the scalp when the electrode is placed on head. The electrode was capable of recording spontaneous EEG and evoked brain activities such as SSVEP with high signal-to-noise ratio. This study implemented a twelve-class SSVEP-based BCI system with eight electrodes embedded in a headband. Subjects also completed a comfort level questionnaire with the dry electrodes. Using a preprocessing algorithm of filter bank analysis (FBA) and a classification algorithm based on task-related component analysis (TRCA), the average classification accuracy of eleven participants was 93.2% using 1-second-long SSVEPs, leading to an average information transfer rate (ITR) of 92.35 bits/min. All subjects did not report obvious discomfort with the dry electrodes. This result represented the highest communication speed in the dry-electrode based BCI systems. The proposed system could provide a comfortable user experience and a stable control method for developing practical BCIs.
Collapse
Affiliation(s)
- Xiao Xing
- The State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- The University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yijun Wang
- The State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China.
- The University of Chinese Academy of Sciences, Beijing, 100049, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China.
| | - Weihua Pei
- The State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China.
- The University of Chinese Academy of Sciences, Beijing, 100049, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China.
| | - Xuhong Guo
- The State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- The University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiduo Liu
- The State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- The University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Wang
- The State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- The University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gege Ming
- The State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- The University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongze Zhao
- The State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- The University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Gui
- The State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Hongda Chen
- The State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- The University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
14
|
|