1
|
Zhou J, Huang Y, Wang W, Li J, Hou Y, Yi Z, Yang H, Hu K, Zhu Y, Wang Z, Ma S. Chronotoxici-Plate Containing Droplet-Engineered Rhythmic Liver Organoids for Drug Toxicity Evaluation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305925. [PMID: 38720476 PMCID: PMC11267367 DOI: 10.1002/advs.202305925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/01/2024] [Indexed: 07/25/2024]
Abstract
The circadian clock coordinates the daily rhythmicity of biological processes, and its dysregulation is associated with various human diseases. Despite the direct targeting of rhythmic genes by many prevalent and World Health Organization (WHO) essential drugs, traditional approaches can't satisfy the need of explore multi-timepoint drug administration strategies across a wide range of drugs. Here, droplet-engineered primary liver organoids (DPLOs) are generated with rhythmic characteristics in 4 days, and developed Chronotoxici-plate as an in vitro high-throughput automated rhythmic tool for chronotherapy assessment within 7 days. Cryptochrome 1 (Cry1) is identified as a rhythmic marker in DPLOs, providing insights for rapid assessment of organoid rhythmicity. Using oxaliplatin as a representative drug, time-dependent variations are demonstrated in toxicity on the Chronotoxici-plate, highlighting the importance of considering time-dependent effects. Additionally, the role of chronobiology is underscored in primary organoid modeling. This study may provide tools for both precision chronotherapy and chronotoxicity in drug development by optimizing administration timing.
Collapse
Affiliation(s)
- Jiaqi Zhou
- Tsinghua Shenzhen International Graduate School (SIGS)Tsinghua UniversityShenzhen518055China
- Tsinghua‐Berkeley Shenzhen Institute (TBSI)Shenzhen518055China
| | - Yi‐chun Huang
- Tsinghua Shenzhen International Graduate School (SIGS)Tsinghua UniversityShenzhen518055China
| | - Wanlong Wang
- Tsinghua Shenzhen International Graduate School (SIGS)Tsinghua UniversityShenzhen518055China
- Tsinghua‐Berkeley Shenzhen Institute (TBSI)Shenzhen518055China
| | - Jiawei Li
- Tsinghua Shenzhen International Graduate School (SIGS)Tsinghua UniversityShenzhen518055China
- Tsinghua‐Berkeley Shenzhen Institute (TBSI)Shenzhen518055China
| | - Yibo Hou
- Tsinghua Shenzhen International Graduate School (SIGS)Tsinghua UniversityShenzhen518055China
| | - Ziqi Yi
- Tsinghua Shenzhen International Graduate School (SIGS)Tsinghua UniversityShenzhen518055China
| | - Haowei Yang
- Tsinghua Shenzhen International Graduate School (SIGS)Tsinghua UniversityShenzhen518055China
- Tsinghua‐Berkeley Shenzhen Institute (TBSI)Shenzhen518055China
| | - Keer Hu
- Tsinghua Shenzhen International Graduate School (SIGS)Tsinghua UniversityShenzhen518055China
| | - Yu Zhu
- Tsinghua Shenzhen International Graduate School (SIGS)Tsinghua UniversityShenzhen518055China
| | - Zitian Wang
- Tsinghua Shenzhen International Graduate School (SIGS)Tsinghua UniversityShenzhen518055China
| | - Shaohua Ma
- Tsinghua Shenzhen International Graduate School (SIGS)Tsinghua UniversityShenzhen518055China
- Tsinghua‐Berkeley Shenzhen Institute (TBSI)Shenzhen518055China
- Key Lab of Industrial Biocatalysis Ministry of EducationTsinghua UniversityBeijing100084China
| |
Collapse
|
2
|
Innominato PF, Macdonald JH, Saxton W, Longshaw L, Granger R, Naja I, Allocca C, Edwards R, Rasheed S, Folkvord F, de Batlle J, Ail R, Motta E, Bale C, Fuller C, Mullard AP, Subbe CP, Griffiths D, Wreglesworth NI, Pecchia L, Fico G, Antonini A. Digital Remote Monitoring Using an mHealth Solution for Survivors of Cancer: Protocol for a Pilot Observational Study. JMIR Res Protoc 2024; 13:e52957. [PMID: 38687985 PMCID: PMC11094600 DOI: 10.2196/52957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/16/2024] [Accepted: 02/05/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Healthy lifestyle interventions have a positive impact on multiple disease trajectories, including cancer-related outcomes. Specifically, appropriate habitual physical activity, adequate sleep, and a regular wholesome diet are of paramount importance for the wellness and supportive care of survivors of cancer. Mobile health (mHealth) apps have the potential to support novel tailored lifestyle interventions. OBJECTIVE This observational pilot study aims to assess the feasibility of mHealth multidimensional longitudinal monitoring in survivors of cancer. The primary objective is to test the compliance (user engagement) with the monitoring solution. Secondary objectives include recording clinically relevant subjective and objective measures collected through the digital solution. METHODS This is a monocentric pilot study taking place in Bangor, Wales, United Kingdom. We plan to enroll up to 100 adult survivors of cancer not receiving toxic anticancer treatment, who will provide self-reported behavioral data recorded via a dedicated app and validated questionnaires and objective data automatically collected by a paired smartwatch over 16 weeks. The participants will continue with their normal routine surveillance care for their cancer. The primary end point is feasibility (eg, mHealth monitoring acceptability). Composite secondary end points include clinically relevant patient-reported outcome measures (eg, the Edmonton Symptom Assessment System score) and objective physiological measures (eg, step counts). This trial received a favorable ethical review in May 2023 (Integrated Research Application System 301068). RESULTS This study is part of an array of pilots within a European Union funded project, entitled "GATEKEEPER," conducted at different sites across Europe and covering various chronic diseases. Study accrual is anticipated to commence in January 2024 and continue until June 2024. It is hypothesized that mHealth monitoring will be feasible in survivors of cancer; specifically, at least 50% (50/100) of the participants will engage with the app at least once a week in 8 of the 16 study weeks. CONCLUSIONS In a population with potentially complex clinical needs, this pilot study will test the feasibility of multidimensional remote monitoring of patient-reported outcomes and physiological parameters. Satisfactory compliance with the use of the app and smartwatch, whether confirmed or infirmed through this study, will be propaedeutic to the development of innovative mHealth interventions in survivors of cancer. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) PRR1-10.2196/52957.
Collapse
Affiliation(s)
- Pasquale F Innominato
- Oncology Department, Ysbyty Gwynedd, Betsi Cadwaladr University Health Board, Bangor, United Kingdom
- Warwick Medical School & Cancer Research Centre, University of Warwick, Coventry, United Kingdom
- Chronotherapy, Cancers and Transplantation Research Unit, Faculty of Medicine, Université Paris-Saclay, Villejuif, France
| | - Jamie H Macdonald
- Institute for Applied Human Physiology, School of Psychology and Sports Science, Bangor University, Bangor, United Kingdom
| | - Wendy Saxton
- Research and Development Department, Ysbyty Gwynedd, Betsi Cadwaladr University Health Board, Bangor, United Kingdom
| | - Laura Longshaw
- Research and Development Department, Ysbyty Gwynedd, Betsi Cadwaladr University Health Board, Bangor, United Kingdom
| | - Rachel Granger
- Institute for Applied Human Physiology, School of Psychology and Sports Science, Bangor University, Bangor, United Kingdom
| | - Iman Naja
- Knowledge Media Institute, The Open University, Milton Keynes, United Kingdom
| | | | - Ruth Edwards
- Dietetics Department, Ysbyty Gwynedd, Betsi Cadwaladr University Health Board, Bangor, United Kingdom
| | - Solah Rasheed
- Dietetics Department, Ysbyty Gwynedd, Betsi Cadwaladr University Health Board, Bangor, United Kingdom
| | - Frans Folkvord
- PredictBy, Barcelona, Spain
- Tilburg School of Humanities and Digital Sciences, Tilburg University, Tilburg, Netherlands
| | | | - Rohit Ail
- Health Innovation, Samsung, Staines, United Kingdom
| | - Enrico Motta
- Knowledge Media Institute, The Open University, Milton Keynes, United Kingdom
| | - Catherine Bale
- Oncology Department, Ysbyty Gwynedd, Betsi Cadwaladr University Health Board, Bangor, United Kingdom
| | - Claire Fuller
- Oncology Department, Ysbyty Gwynedd, Betsi Cadwaladr University Health Board, Bangor, United Kingdom
| | - Anna P Mullard
- Oncology Department, Ysbyty Gwynedd, Betsi Cadwaladr University Health Board, Bangor, United Kingdom
| | - Christian P Subbe
- Acute and Critical Care Medicine, Ysbyty Gwynedd, Betsi Cadwaladr University Health Board, Bangor, United Kingdom
- School of Medical Sciences, Bangor University, Bangor, United Kingdom
| | - Dawn Griffiths
- Oncology Department, Ysbyty Gwynedd, Betsi Cadwaladr University Health Board, Bangor, United Kingdom
| | - Nicholas I Wreglesworth
- Oncology Department, Ysbyty Gwynedd, Betsi Cadwaladr University Health Board, Bangor, United Kingdom
- School of Medical Sciences, Bangor University, Bangor, United Kingdom
| | - Leandro Pecchia
- School of Engineering, University of Warwick, Coventry, United Kingdom
- Facoltà Dipartimentale di Ingegneria, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Giuseppe Fico
- Life Supporting Technologies, Escuela Técnica Superior de Ingenieros de Telecomunicaciones, Universidad Politécnica de Madrid, Madrid, Spain
| | - Alessio Antonini
- Knowledge Media Institute, The Open University, Milton Keynes, United Kingdom
| |
Collapse
|
3
|
Yu Y, Liu JY, Yang HJ, Luo XQ, Gao XP, Huang XX, Tang AX, Mary Cheng HY, Liu WC, Zhang P. Circadian disruption during fetal development promotes pathological cardiac remodeling in male mice. iScience 2024; 27:109008. [PMID: 38352228 PMCID: PMC10863319 DOI: 10.1016/j.isci.2024.109008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/19/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
Disruption of circadian rhythms during fetal development may predispose mice to developing heart disease later in life. Here, we report that male, but not female, mice that had experienced chronic circadian disturbance (CCD) in utero were more susceptible to pathological cardiac remodeling compared with mice that had developed under normal intrauterine conditions. CCD-treated males showed ventricular chamber dilatation, enhanced myocardial fibrosis, decreased contractility, higher rates of induced tachyarrhythmia, and elevated expression of biomarkers for heart failure and myocardial remodeling. In utero CCD exposure also triggered sex-dependent changes in cardiac gene expression, including upregulation of the secretoglobin gene, Scgb1a1, in males. Importantly, cardiac overexpression of Scgb1a1 was sufficient to induce myocardial hypertrophy in otherwise naive male mice. Our findings reveal that in utero CCD exposure predisposes male mice to pathological remodeling of the heart later in life, likely as a consequence of SCGB1A1 upregulation.
Collapse
Affiliation(s)
- Yang Yu
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Jing-Yu Liu
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Hui-Jiao Yang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiao-Qin Luo
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiao-Ping Gao
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiao-Xin Huang
- School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Ao-Xue Tang
- School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Hai-Ying Mary Cheng
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Wei-Chao Liu
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Peng Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|
4
|
Baum L, Johns M, Poikela M, Möller R, Ananthasubramaniam B, Prasser F. Data integration and analysis for circadian medicine. Acta Physiol (Oxf) 2023; 237:e13951. [PMID: 36790321 DOI: 10.1111/apha.13951] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/04/2023] [Accepted: 02/12/2023] [Indexed: 02/16/2023]
Abstract
Data integration, data sharing, and standardized analyses are important enablers for data-driven medical research. Circadian medicine is an emerging field with a particularly high need for coordinated and systematic collaboration between researchers from different disciplines. Datasets in circadian medicine are multimodal, ranging from molecular circadian profiles and clinical parameters to physiological measurements and data obtained from (wearable) sensors or reported by patients. Uniquely, data spanning both the time dimension and the spatial dimension (across tissues) are needed to obtain a holistic view of the circadian system. The study of human rhythms in the context of circadian medicine has to confront the heterogeneity of clock properties within and across subjects and our inability to repeatedly obtain relevant biosamples from one subject. This requires informatics solutions for integrating and visualizing relevant data types at various temporal resolutions ranging from milliseconds and seconds to minutes and several hours. Associated challenges range from a lack of standards that can be used to represent all required data in a common interoperable form, to challenges related to data storage, to the need to perform transformations for integrated visualizations, and to privacy issues. The downstream analysis of circadian rhythms requires specialized approaches for the identification, characterization, and discrimination of rhythms. We conclude that circadian medicine research provides an ideal environment for developing innovative methods to address challenges related to the collection, integration, visualization, and analysis of multimodal multidimensional biomedical data.
Collapse
Affiliation(s)
- Lena Baum
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Marco Johns
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Maija Poikela
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ralf Möller
- Institute of Information Systems, University of Lübeck, Lübeck, Germany
| | | | - Fabian Prasser
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|