1
|
Wang Z, Liu W, Yan Y, Fan TP, Cai Y. Characterization and Application of an Aspartate Dehydrogenase from Achromobacter denitrificans. Appl Biochem Biotechnol 2024; 196:6556-6570. [PMID: 38386141 DOI: 10.1007/s12010-024-04867-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
A novel gene encoding aspartate dehydrogenase (ASPDH) has been discovered in Achromobacter denitrificans. The product of this gene has a strict dependence on NADH and demonstrated significant reductive activity towards not only oxaloacetate (OAA) but also 2-ketobutyric acid. Further enzymatic characterization revealed the kinetic parameters of ASPDH for OAA and 2-ketobutyric acid were as follows: Km values of 4.25 mM and 0.89 mM, Vmax values of 10.67 U mg-1 and 2.10 U mg-1, and Kcat values of 3.70 s-1 and 0.72 s-1, respectively. The enzyme also showed a dependency on metal ions, with EDTA and Cu2+ exerting strong inhibitory effects, while Ca2+ and Fe2+ exhibited pronounced enhancing effects. By utilizing a whole-cell biocatalyst system comprising glucose dehydrogenase (GDH) and ASPDH as a coupled system to replenish cofactors by oxidizing glucose, enabling the effective conversion of 2-ketobutyric acid to L-2-aminobutyric acid (L-2-ABA) with 97.2% yield.
Collapse
Affiliation(s)
- Zifeng Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Wenjing Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Yi Yan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Tai-Ping Fan
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1T, UK
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
2
|
Suthi S, Gopi D, Chaudhary A, Sarma PVGK. The Therapeutic Potential of 4-Methoxy-1-methyl-2-oxopyridine-3-carbamide (MMOXC) Derived from Ricinine on Macrophage Cell Lines Infected with Methicillin-Resistant Strains of Staphylococcus aureus. Appl Biochem Biotechnol 2022; 195:2843-2862. [PMID: 36418711 DOI: 10.1007/s12010-022-04269-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 11/25/2022]
Abstract
The incidences of methicillin-resistant strains of Staphylococcus aureus (MRSA) and their survival inside the macrophages are the major attributes of the relapsed infections after antimicrobial therapy, and it is a global problem. In this context, we have previously demonstrated 4-methoxy-1-methyl-2-oxopyridine-3-carbamide (MMOXC), a Ricinine derivative exhibiting anti-S. aureus and anti-biofilm characteristics by competitively inhibiting uridine monophosphate kinase (UMPK), UDP-N-acetyl muramyl pentapeptide ligase (Mur-F), and peptidyl deformylase, (PDF). In the present study, the stability of this competitive inhibitor MMOXC was evaluated by showing its ability to remain bound to the active sites of UMPK, Mur-F, and PDF even after increasing the incubation time, temperature, pH, and substrate concentration. On growing MRSA in fewer concentrations of MMOXC, these strains could not attain resistance to MMOXC and at the same time distinct reductions in the expression of UMPK, Mur-F, and PDF genes were noted. In vitro, infective models were generated by infecting MRSA to RAW 264.7 and human monocyte-derived macrophage (hMDM) cell lines. In these infected cell lines, in spite of increased nitric oxide synthase (NOS), NADPH-P450 reductase, superoxide dismutase, catalase, and peroxidase activities, the MRSA survived. At 640 µM/ml, the concentration of MMOXC penetrated into these infected cells and obliterated MRSA. While treating uninfected macrophage cell lines with MMOXC, no appreciable effect was observed indicating that MMOXC is the most suitable drug for the treatment of infections caused by MRSA.
Collapse
Affiliation(s)
- Subbarayudu Suthi
- Microbial Genetics Laboratory, Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences and University, Alipiri Road, Andhra Pradesh, 517501, Tirupati, India
| | - Deepika Gopi
- Microbial Genetics Laboratory, Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences and University, Alipiri Road, Andhra Pradesh, 517501, Tirupati, India
| | - Abhijit Chaudhary
- Department of Microbiology, Sri Venkateswara Institute of Medical Sciences, Tirupati, 517501, Andhra Pradesh, India
| | - Potukuchi Venkata Gurunadha Krishna Sarma
- Microbial Genetics Laboratory, Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences and University, Alipiri Road, Andhra Pradesh, 517501, Tirupati, India.
| |
Collapse
|
3
|
Li Z, Sun C, Lou L, Li Z. A cocktail of protein engineering strategies: breaking the enzyme bottleneck one by one for high UTP production in vitro. Biotechnol Bioeng 2022; 119:1405-1415. [PMID: 35167706 DOI: 10.1002/bit.28061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/02/2022] [Accepted: 02/06/2022] [Indexed: 11/06/2022]
Abstract
The pyrimidine metabolic pathway is tightly regulated in microorganisms, allowing limited success in metabolic engineering for the production of pathway-related substances. Here, we constructed a four-enzyme coupled system for the in vitro production of uridine triphosphate (UTP). The enzymes used include nucleoside kinase, uridylate kinase, nucleoside diphosphate kinase, and polyphosphate kinase for energy regeneration. All these enzymes are derived from extremophiles. To increase the total and unit time yield of the product, three enzymes other than polyphosphate kinase were modified separately by multiple protein engineering strategies. A nucleoside kinase variant with increased specific activity from 2.7 U/mg to 36.5 U/mg, a uridylate kinase variant (specific activity of 37.1 U/mg) with a 5.2-fold increase in thermostability, and a nucleoside diphosphate kinase variant with a 2-fold increase in specific activity to over 900 U/mg were obtained, respectively. The reaction conditions of the coupled system were further optimized, and a two-stage method was taken to avoid the problem of enzymatic pH adaptation mismatch. Under optimal conditions, this system can produce more than 65 mM UTP (31.5 g/L) in 3.0 h. The substrate conversion rate exceeded 98% and the maximum UTP productivity reached 40 mM/h. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zonglin Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Chuanqi Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Longwei Lou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Zhimin Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.,Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
4
|
Identification of a l -Lactate dehydrogenase with 3,4-dihydroxyphenylpyruvic reduction activity for l -Danshensu production. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
5
|
Chen F, Dong G, Ma X, Wang F, Zhang Y, Xiong E, Wu J, Wang H, Qian Q, Wu L, Yu Y. UMP kinase activity is involved in proper chloroplast development in rice. PHOTOSYNTHESIS RESEARCH 2018; 137:53-67. [PMID: 29392476 PMCID: PMC5999181 DOI: 10.1007/s11120-017-0477-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 12/27/2017] [Indexed: 05/23/2023]
Abstract
Isolation of leaf-color mutants is important in understanding the mechanisms of chloroplast biogenesis and development. In this study, we identified and characterized a rice (Oryza sativa) mutant, yellow leaf 2 (yl2), exhibiting pale yellow leaves with a few longitudinal white stripes at the early seedling stage then gradually turning yellow. Genetic analyses revealed that YL2 encodes a thylakoid membrane-localized protein with significant sequence similarity to UMP kinase proteins in prokaryotes and eukaryotes. Prokaryotic UMP kinase activity was subsequently confirmed, with YL2 deficiency causing a significant reduction in chlorophyll accumulation and photochemical efficiency. Moreover, YL2 is also light dependent and preferentially expressed in green tissues. Chloroplast development was abnormal in the yl2 mutant, possibly due to reduced accumulation of thylakoid membranes and a lack of normal stroma lamellae. 2D Blue-Native SDS-PAGE and immunoblot analyses revealed a reduction in several subunits of photosynthetic complexes, in particular, the AtpB subunit of ATP synthase, while mRNA levels of corresponding genes were unchanged or increased compared with the wild type. In addition, we observed a significant decrease (ca. 36.3%) in cpATPase activity in the yl2 mutant compared with the wild type. Taken together, our results suggest that UMP kinase activity plays an essential role in chloroplast development and regulating cpATPase biogenesis in rice.
Collapse
Affiliation(s)
- Fei Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang, China
| | - Guojun Dong
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Zhejiang, China
| | - Xiaohui Ma
- College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang, China
| | - Fang Wang
- Institute of Insect Sciences, Zhejiang University, Zhejiang, China
| | - Yanli Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang, China
| | - Erhui Xiong
- College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang, China
| | - Jiahuan Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang, China
| | - Huizhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang, China
| | - Qian Qian
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Zhejiang, China
| | - Limin Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang, China.
| | - Yanchun Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang, China.
| |
Collapse
|
6
|
Quantitative Expression Analysis of SpA, FnbA and Rsp Genes in Staphylococcus aureus: Actively Associated in the Formation of Biofilms. Curr Microbiol 2017; 74:1394-1403. [DOI: 10.1007/s00284-017-1331-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 08/07/2017] [Indexed: 10/19/2022]
|
7
|
Swarupa V, Chaudhury A, Krishna Sarma PVG. Effect of 4-methoxy 1-methyl 2-oxopyridine 3-carbamide on Staphylococcus aureus by inhibiting UDP-MurNAc-pentapeptide, peptidyl deformylase and uridine monophosphate kinase. J Appl Microbiol 2017; 122:663-675. [PMID: 27987382 DOI: 10.1111/jam.13378] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 12/02/2016] [Accepted: 12/09/2016] [Indexed: 02/01/2023]
Abstract
AIMS The present study aimed to investigate the anti-Staphylococcus aureus and anti-biofilm properties of 4-methoxy-1-methyl-2-oxopyridine-3-carbamide (MMOXC) on S. aureus UDP-MurNAc-pentapeptide (MurF), peptidyl deformylase (PDF) and uridine monophosphate kinase (UMPK). METHODS AND RESULTS The in vitro efficacy of MMOXC was evaluated using quantitative polymerase chain reaction, in vitro assays and broth microdilution methods. Further, the minimum inhibitory concentration (MIC), IC50 and zone of inhibition were recorded in addition to the anti-biofilm property. MMOXC inhibited pure recombinant UMPK and PDF enzymes with a Ki of 0·37 and 0·49 μmol l-1 . However Ki was altered for MurF with varying substrates. The MurF Ki for UMT, d-Ala-d-Ala and ATP as substrates was 0·3, 0·25 and 1·4 μmol l-1 , respectively. Real-time PCR analysis showed a significant reduction in PDF and MurF expression which correlated with the MIC90 at 100 μmol l-1 and IC50 in the range 42 ± 1·5 to 50 ± 1 μmol l-1 against all strains tested. At 5 μmol l-1 MMOXC was able completely to remove preformed biofilms of S. aureus and other drug resistant strains. CONCLUSIONS MMOXC was able to kill S. aureus and drug resistant strains tested by inhibiting MurF, UMPK and PDF enzymes and completely obliterated preformed biofilms. SIGNIFICANCE AND IMPACT OF THE STUDY Growth reduction and biofilm removal are prerequisites for controlling S. aureus infections. In this study MMOXC exhibited prominent anti-S. aureus and anti-biofilm properties by blocking cell wall formation, RNA biosynthesis and protein maturation.
Collapse
Affiliation(s)
- V Swarupa
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, India
| | - A Chaudhury
- Department of Microbiology, Sri Venkateswara Institute of Medical Sciences, Tirupati, India
| | - P V G Krishna Sarma
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, India
| |
Collapse
|
8
|
Vasu D, Kumar PS, Prasad UV, Swarupa V, Yeswanth S, Srikanth L, Sunitha MM, Choudhary A, Sarma PVGK. Phosphorylation of Staphylococcus aureus Protein-Tyrosine Kinase Affects the Function of Glucokinase and Biofilm Formation. IRANIAN BIOMEDICAL JOURNAL 2016; 21:94-105. [PMID: 27695030 PMCID: PMC5274716 DOI: 10.18869/acadpub.ibj.21.2.94] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background: When Staphylococcus aureus is grown in the presence of high concentration of external glucose, this sugar is phosphorylated by glucokinase (glkA) to form glucose-6-phosphate. This product subsequently enters into anabolic phase, which favors biofilm formation. The presence of ROK (repressor protein, open reading frame, sugar kinase) motif, phosphate-1 and -2 sites, and tyrosine kinase sites in glkA of S. aureus indicates that phosphorylation must regulate the glkA activity. The aim of the present study was to identify the effect of phosphorylation on the function of S. aureusglkA and biofilm formation. Methods: Pure glkA and protein-tyrosine kinase (BYK) of S. aureus ATCC 12600 were obtained by fractionating the cytosolic fractions of glkA1 and BYK-1 expressing recombinant clones through nickel metal chelate column. The pure glkA was used as a substrate for BYK, and the phosphorylation of glkA was confirmed by treating with reagent A and resolving in SDS-PAGE, as well as staining with reagent A. The kinetic parameters of glkA and phosphorylated glkA were determined spectrophotometrically, and in silico tools were used for validation. S. aureus was grown in brain heart infusion broth, which was supplemented with glucose, and then biofilm units were calculated. Results: Fourfold elevated glkA activity was observed upon the phosphorylation by BYK. Protein-protein docking analysis revealed that glkA structure docked close to the adenosine triphosphate-binding site of BYK structure corroborating the kinetic results. Further, S. aureus grown in the presence of elevated glucose concentration exhibited an increase in the rate of biofilm formation. Conclusion: The elevated function of glkA is an essential requirement for increased biofilm units in S. aureus, a key pathogenic factor that helps its survival and the progress of infection.
Collapse
Affiliation(s)
- Dudipeta Vasu
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517 507, Andhra Pradesh, India
| | - Pasupuleti Santhosh Kumar
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517 507, Andhra Pradesh, India
| | - Uppu Venkateswara Prasad
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517 507, Andhra Pradesh, India
| | - Vimjam Swarupa
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517 507, Andhra Pradesh, India
| | - Sthanikam Yeswanth
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517 507, Andhra Pradesh, India
| | - Lokanathan Srikanth
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517 507, Andhra Pradesh, India
| | - Manne Mudhu Sunitha
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517 507, Andhra Pradesh, India
| | - Abhijith Choudhary
- Department of Microbiology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517 507, Andhra Pradesh, India
| | | |
Collapse
|
9
|
Azarian T, Daum RS, Petty LA, Steinbeck JL, Yin Z, Nolan D, Boyle-Vavra S, Hanage WP, Salemi M, David MZ. Intrahost Evolution of Methicillin-Resistant Staphylococcus aureus USA300 Among Individuals With Reoccurring Skin and Soft-Tissue Infections. J Infect Dis 2016; 214:895-905. [PMID: 27288537 DOI: 10.1093/infdis/jiw242] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/31/2016] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Methicillin-resistant Staphylococcus aureus (MRSA) USA300 is the leading cause of MRSA infections in the United States and has caused an epidemic of skin and soft-tissue infections. Recurrent infections with USA300 MRSA are common, yet intrahost evolution during persistence on an individual has not been studied. This gap hinders the ability to clinically manage recurrent infections and reconstruct transmission networks. METHODS To characterize bacterial intrahost evolution, we examined the clinical courses of 4 subjects with 3-6 recurrent USA300 MRSA infections, using patient clinical data, including antibiotic exposure history, and whole-genome sequencing and phylogenetic analysis of all available MRSA isolates (n = 29). RESULTS Among sequential isolates, we found variability in diversity, accumulation of mutations, and mobile genetic elements. Selection for antimicrobial-resistant populations was observed through both an increase in the number of plasmids conferring multidrug resistance and strain replacement by a resistant population. Two of 4 subjects had strain replacement with a genetically distinct USA300 MRSA population. DISCUSSIONS During a 5-year period in 4 subjects, we identified development of antimicrobial resistance, intrahost evolution, and strain replacement among isolates from patients with recurrent MRSA infections. This calls into question the efficacy of decolonization to prevent recurrent infections and highlights the adaptive potential of USA300 and the need for effective sampling.
Collapse
Affiliation(s)
- Taj Azarian
- Center for Communicable Disease Dynamics, Department of Epidemiology, T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | | | | | | | | | - David Nolan
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine Emerging Pathogens Institute, University of Florida, Gainesville
| | | | - W P Hanage
- Center for Communicable Disease Dynamics, Department of Epidemiology, T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Marco Salemi
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine Emerging Pathogens Institute, University of Florida, Gainesville
| | - Michael Z David
- Department of Pediatrics Department of Medicine, University of Chicago, Illinois
| |
Collapse
|
10
|
Vasu D, Sunitha MM, Srikanth L, Swarupa V, Prasad UV, Sireesha K, Yeswanth S, Kumar PS, Venkatesh K, Chaudhary A, Sarma PVGK. In Staphylococcus aureus the regulation of pyruvate kinase activity by serine/threonine protein kinase favors biofilm formation. 3 Biotech 2015; 5:505-512. [PMID: 28324552 PMCID: PMC4522715 DOI: 10.1007/s13205-014-0248-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 08/26/2014] [Indexed: 11/30/2022] Open
Abstract
Staphylococcus aureus, a natural
inhabitant of nasopharyngeal tract, survives mainly as biofilms. Previously we have observed that S. aureus ATCC 12600 grown under anaerobic conditions exhibited high rate of biofilm formation and l-lactate dehydrogenase activity. Thus, the concentration of pyruvate plays a critical role in S. aureus, which is primarily catalyzed by pyruvate kinase (PK). Analyses of the PK gene sequence (JN645815) revealed presence of PknB site in PK gene indicating that phosphorylation may be influencing the functioning of PK. To establish this hypothesis the pure enzymes of S. aureus ATCC 12600 were obtained by expressing these genes in PK 1 and PV 1 (JN695616) clones and passing the cytosolic fractions through nickel metal chelate column. The molecular weights of pure recombinant PK and PknB are 63 and 73 kDa, respectively. The enzyme kinetics of pure PK showed KM of 0.69 ± 0.02 µM, while the KM of PknB for stpks (stpks = NLCNIPCSALLSSDITASVNCAK) substrate was 0.720 ± 0.08 mM and 0.380 ± 0.07 mM for autophosphorylation. The phosphorylated PK exhibited 40 % reduced activity (PK = 0.2 ± 0.015 μM NADH/min/ml to P-PK = 0.12 ± 0.01 μM NADH/min/ml). Elevated synthesis of pyruvate kinase was observed in S. aureus ATCC 12600 grown in anaerobic conditions suggesting that the formed pyruvate is more utilized in the synthesis phase, supporting increased rate of biofilm formation.
Collapse
Affiliation(s)
- D Vasu
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, AP, 517507, India
| | - M M Sunitha
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, AP, 517507, India
| | - L Srikanth
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, AP, 517507, India
| | - V Swarupa
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, AP, 517507, India
| | - U Venkateswara Prasad
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, AP, 517507, India
| | - K Sireesha
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, AP, 517507, India
| | - S Yeswanth
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, AP, 517507, India
| | - P Santhosh Kumar
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, AP, 517507, India
| | - K Venkatesh
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, AP, 517507, India
| | - Abhijit Chaudhary
- Department of Microbiology, Sri Venkateswara Institute of Medical Sciences, Tirupati, AP, 517507, India
| | - P V G K Sarma
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, AP, 517507, India.
| |
Collapse
|
11
|
New biocatalysts for one pot multistep enzymatic synthesis of pyrimidine nucleoside diphosphates from readily available reagents. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2014.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Venkateswara Prasad U, Vasu D, Yeswanth S, Swarupa V, Sunitha MM, Choudhary A, Sarma PVGK. Phosphorylation controls the functioning ofStaphylococcus aureusisocitrate dehydrogenase – favours biofilm formation. J Enzyme Inhib Med Chem 2015; 30:655-61. [DOI: 10.3109/14756366.2014.959945] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
13
|
Yeswanth S, Nanda Kumar Y, Venkateswara Prasad U, Swarupa V, Koteswara rao V, Venkata Gurunadha Krishna Sarma P. Cloning and characterization of l-lactate dehydrogenase gene of Staphylococcus aureus. Anaerobe 2013; 24:43-8. [DOI: 10.1016/j.anaerobe.2013.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 08/30/2013] [Accepted: 09/02/2013] [Indexed: 11/30/2022]
|
14
|
Lakshmi HP, Prasad UV, Yeswanth S, Swarupa V, Prasad OH, Narasu ML, Sarma PVGK. Molecular characterization of α-amylase from Staphylococcus aureus. Bioinformation 2013; 9:281-5. [PMID: 23559746 PMCID: PMC3607186 DOI: 10.6026/97320630009281] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 02/04/2013] [Indexed: 11/23/2022] Open
Abstract
Staphylococcus aureus is one of the prominent Gram positive human pathogen secretes many surface and secretary proteins including various enzymes and pathogenic factors that favour the successful colonization and infection of host tissue. α-amylase is one of the enzymes secreted by S. aureus which catalyses the breakdown of complex sugars to monosaccharides, which are required for colonization and survival of this pathogen in any anatomical locales. In the present study we have cloned, sequenced, expressed and characterized α-amylase gene from S. aureus ATCC12600. The recombinant enzyme has a molecular weight of 58kDa and the kinetics showed Vmax 0.0208±0.033 (mg/ml)/mg/min and Km 10.633±0.737mg/ml. The multiple sequence analysis showed α- amylase of S. aureus exhibited large differences with Bacillus subtilis and Streptococcus bovis. As the crystal structure of S. aureus α- amylase was unavailable, we used homology modelling method to build the structure. The built structure was validated by Ramachandran plot which showed 90% of the residues in the allowed region while no residue was found in the disallowed region and the built structure was close to the crystal structure with Z-Score: -6.85. The structural superimposition studies with α- amylases of Bacillus subtilis and Streptococcus bovis showed distinct differences with RMSD values of 18.158Åand 7.091Å respectively which correlated with enzyme kinetics, indicating α-amylase is different among these bacteria.
Collapse
Affiliation(s)
| | - Uppu Venkateswara Prasad
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati-517 507, AP, India
| | - Sthanikam Yeswanth
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati-517 507, AP, India
| | - Vimjam Swarupa
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati-517 507, AP, India
| | - Osuru Hari Prasad
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati-517 507, AP, India
| | | | | |
Collapse
|
15
|
Lakshmi HP, Yeswanth S, Prasad UV, Vasu D, Swarupa V, Kumar PS, Narasu ML, Krishna Sarma PVG. Cloning, expression and characterization of glucokinase gene involved in the glucose-6- phosphate formation in Staphylococcus aureus. Bioinformation 2013; 9:169-73. [PMID: 23519063 PMCID: PMC3602885 DOI: 10.6026/97320630009169] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 01/28/2013] [Indexed: 11/23/2022] Open
Abstract
Glucose-6-phosphate (G-6-P) formation in Staphylococcus aureus is catalysed by glucokinase (glkA) gene under high glucose
concentration leading to upregulation of various pathogenic factors; therefore the present study is aimed in the cloning and
characterization of glk A gene from S. aureus ATCC12600. The glk A gene was cloned in the Sma I site of pQE 30, sequenced
(Accession number: JN645812) and expressed in E. coli DH5α. The recombinant glk A expressed from the resultant glk A 1 clone
was purified using nickel metal chelate chromatography, the pure enzyme gave single band in SDS-PAGE with molecular weight
of 33kDa. The rglk A showed very high affinity to glucose Km 5.1±0.06mM with Hill coefficient of 1.66±0.032mM. Analysis of
glucokinase sequence of S. aureus showed presence of typical ATP binding site and ROK motif CNCGRSGCIE. Sequentially and
phylogenetically S. aureus glk A exhibited low identity with other bacterial glk A and 21% homology with human glucokinase
(GCK). Functionally, S. aureus glk A showed higher rate of G-6-P formation compared to human GCK which may have profound
role in the pathogenesis.
Collapse
|
16
|
Prasad UV, Vasu D, Kumar YN, Kumar PS, Yeswanth S, Swarupa V, Phaneendra BV, Chaudhary A, Sarma PVGK. Cloning, expression and characterization of NADP-dependent isocitrate dehydrogenase from Staphylococcus aureus. Appl Biochem Biotechnol 2013; 169:862-9. [PMID: 23288593 DOI: 10.1007/s12010-012-0027-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 12/10/2012] [Indexed: 12/01/2022]
Abstract
The Krebs cycle dictates oxidative and reductive conditions in Staphylococcus aureus and is mainly regulated by isocitrate dehydrogenase (IDH) which plays pivotal role in the growth and pathogenesis of the bacteria. In the present study, IDH gene from S. aureus ATCC12600 was cloned in the Sma I site of pQE 30 vector; the resultant clone was named as UVIDH1. The insert in the clone was sequenced (accession number HM067707), and the sequence showed complete homology with IDH sequence of other S. aureus strains reported in the database indicating presence of single enzyme in S. aureus, and considerable sequence homology with other bacteria was observed; however, only 24% homology was found with NADP-dependent human IDH. Phylogenetically, the S. aureus IDH showed close identity with Bacillus subtilis and high degree of variability with other bacteria and human IDH. The expression of IDH in the clone UVIDH1 was induced with 1 mM IPTG, and the recombinant IDH was purified by passing through nickel metal chelate column; the purified recombinant IDH showed a single band in SDS-PAGE with a molecular weight of 40 kDa; K(m) and V(max) for isocitrate are 8.2 ± 0.28 and 525 ± 25 μM NADPH/mg/min, respectively, and for cofactor NADP 67.5 ± 2.82 μM and V(max) 50.5 ± 2.12 μM NADPH/mg/min.
Collapse
Affiliation(s)
- U Venkateswara Prasad
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517507, India
| | | | | | | | | | | | | | | | | |
Collapse
|