1
|
Expression of Modified Snowdrop Lectin ( Galanthus nivalis Agglutinin) Protein Confers Aphids and Plutella xylostella Resistance in Arabidopsis and Cotton. Genes (Basel) 2022; 13:genes13071169. [PMID: 35885952 PMCID: PMC9316576 DOI: 10.3390/genes13071169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 01/27/2023] Open
Abstract
Cotton is a major fiber crop in the world that can be severely infested by pests in agricultural fields. Identifying new insect-resistance genes and increasing the expression of known insect-resistance genes are imperative in cultivated cotton. Galanthus nivalis agglutinin (GNA), a lectin that is toxic to both chewing and sucking pests, is mainly expressed in monocotyledons. It is necessary to improve the expression of the GNA protein and to test whether the lectin confers insect resistance to dicotyledons plants. We report a modified GNA gene (ASGNA) via codon optimization, its insertion into Arabidopsis thaliana, and transient expression in cotton to test its efficacy as an insect-resistance gene against cotton aphids and Plutella xylostella. The amount of ASGNA in transgenic plants reached approximately 6.5 μg/g of fresh weight. A feeding bioassay showed that the survival rate of aphids feeding on the leaves of ASGNA transgenic plants was lower than those of aphids feeding on the leaves of non-optimized GNA (NOGNA) transgenic plants and wild-type plants. Meanwhile, the fertility rate was 36% when fed on the ASGNA transgenic plants, while the fertility was 70% and 95% in NOGNA transgenic plants and wild-type plants. Correspondingly, the highest mortality of 55% was found in ASGNA transgenic lines, while only 35% and 20% mortality was observed in NOGNA transgenic plants and wild-type plants, respectively. Similar results were recorded for aphids feeding on cotton cotyledons with transient expression of ASGNA. Taken together, the results show that ASGNA exhibited high insecticidal activity towards sap-sucking insects and thus is a promising candidate gene for improving insect resistance in cotton and other dicotyledonous plants.
Collapse
|
2
|
Jan Q, Ali Khan I, Al-Shuraym LA, Ali Alshehri M, Ahmed N, Saeed M, El-Sharnouby M, Sayed S. Comparative conventional preventive strategies for insect pest of okra. Saudi J Biol Sci 2022; 29:3114-3121. [PMID: 35360500 PMCID: PMC8961213 DOI: 10.1016/j.sjbs.2022.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/11/2022] [Accepted: 03/17/2022] [Indexed: 11/25/2022] Open
Abstract
The use of natural substances for pest control in agriculture is economically viable. It benefits both the human being and the environment due to its low persistence and toxicity. Therefore, the biopesticidal potential of three- plants-derived extracts (clove [Syzygium aromaticum], Hing [Hing (Asafetida)], and Wood Ash [Eucalyptus globulas]) was evaluated against different ' 'insect's pests on five okra varieties. All the treatments were sprayed at two stages, 1st before flowering and 2nd at the fruit-bearing stage. The results of the 24 h pre-spray revealed that the mean density of Aphis gossypii, Erias insulana, and Bemisia tabaci were significantly lower on a Shehzadi variety. However, among the treatments mean density of the A. gossypii and E. insulana after 1st and 2nd treatments were substantially more bass with E. globulas. Moreover, the Mean density of aphids was significantly lower after 72 h and 1-week time intervals. Furthermore, after 1st and 2nd treatments, the B. tabaci was considerably lower with hing on Shehzadi variety. It was found in the present study that the yield of five okra varieties was affected significantly by the application of the three treatments-pesticides. Among the various treatments, the application with E. globulas recorded a considerably higher crop yield. Therefore, clove, hing and E. globulas could be effective as alternative pest management methods. Furthermore, biopesticides generally are encouraged since they can proffer the solution of controlling insect pests without any environmental concern.
Collapse
|
3
|
The potential and efficacy of Allium sativum leaf lectin (ASAL) against sap-sucking insect pests of transgenic maize. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00533-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Naik S, Rawat RS, Khandai S, Kumar M, Jena SS, Vijayalakshmi MA, Kumar S. Biochemical characterisation of lectin from Indian hyacinth plant bulbs with potential inhibitory action against human cancer cells. Int J Biol Macromol 2017; 105:1349-1356. [PMID: 28797811 PMCID: PMC7124446 DOI: 10.1016/j.ijbiomac.2017.07.170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/06/2017] [Accepted: 07/28/2017] [Indexed: 12/20/2022]
Abstract
This work describes purification and characterisation of a monocot mannose-specific lectin from Hyacinth bulbs. The purified lectin has a molecular mass of ∼30kDa in reducing as well as in non-reducing SDS-PAGE. In hydrodynamic studies by Dynamic Light Scattering (DLS) showed that purified lectin was monomeric in nature with a molecular size of 2.38±0.03nm. Agglutination activity of purified lectin was confirmed by rabbit erythrocytes and its agglutination activity was inhibited by d-mannose and a glycoprotein (ovalbumin). Glycoprotein nature of purified lectin was confirmed by Periodic Acid Schiff's (PAS) stain. Purified lectin showed moderate pH and thermal stability by retaining hemagglutination activity from pH 6-8 and temperature up to 60°C. It also suppressed the growth of human colon cancer cells (Caco-2) and cervical cancer cells (HeLa) with IC50 values of 127μg/mL and 158μg/mL respectively, after 24-h treatment. Morphological studies of treated cells (Caco-2 and HeLa) with hyacinth lectin by AO/EB dual staining indicated that purified lectin is capable of inducing apoptosis.
Collapse
Affiliation(s)
- Sanjay Naik
- Centre for Bioseparation Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Ravindra Singh Rawat
- Centre for Bioseparation Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Santripti Khandai
- Department of Physics, National Institute of Technology, Rourkela, India
| | - Mukesh Kumar
- Department of Biochemistry, University of California, Riverside, USA
| | - Sidhartha S Jena
- Department of Physics, National Institute of Technology, Rourkela, India
| | | | - Sanjit Kumar
- Centre for Bioseparation Technology, VIT University, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
5
|
Legume Lectins: Proteins with Diverse Applications. Int J Mol Sci 2017; 18:ijms18061242. [PMID: 28604616 PMCID: PMC5486065 DOI: 10.3390/ijms18061242] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 12/26/2022] Open
Abstract
Lectins are a diverse class of proteins distributed extensively in nature. Among these proteins; legume lectins display a variety of interesting features including antimicrobial; insecticidal and antitumor activities. Because lectins recognize and bind to specific glycoconjugates present on the surface of cells and intracellular structures; they can serve as potential target molecules for developing practical applications in the fields of food; agriculture; health and pharmaceutical research. This review presents the current knowledge of the main structural characteristics of legume lectins and the relationship of structure to the exhibited specificities; provides an overview of their particular antimicrobial; insecticidal and antitumor biological activities and describes possible applications based on the pattern of recognized glyco-targets.
Collapse
|
6
|
Molecular Mechanism Underlying the Entomotoxic Effect of Colocasia esculenta Tuber Agglutinin against Dysdercus cingulatus. INSECTS 2015. [PMCID: PMC4693173 DOI: 10.3390/insects6040827] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Colocasia esculenta tuber agglutinin (CEA), a mannose binding lectin, exhibits insecticidal efficacy against different hemipteran pests. Dysdercus cingulatus, red cotton bug (RCB), has also shown significant susceptibility to CEA intoxication. However, the molecular basis behind such entomotoxicity of CEA has not been addressed adequately. The present study elucidates the mechanism of insecticidal efficacy of CEA against RCB. Confocal and scanning electron microscopic analyses documented CEA binding to insect midgut tissue, resulting in an alteration of perimicrovillar membrane (PMM) morphology. Internalization of CEA into insect haemolymph and ovary was documented by western blotting analyses. Ligand blot followed by mass spectrometric identification revealed the cognate binding partners of CEA as actin, ATPase and cytochrome P450. Deglycosylation and mannose inhibition assays indicated the interaction to probably be mannose mediated. Bioinformatic identification of putative glycosylation or mannosylation sites in the binding partners further supports the sugar mediated interaction. Correlating entomotoxicity of CEA with immune histological and binding assays to the insect gut contributes to a better understanding of the insecticidal potential of CEA and endorses its future biotechnological application.
Collapse
|
7
|
Xiao X, He H, Ding X, Yang Q, Liu X, Liu S, Rang J, Wang T, Zuo M, Xia L. Purification and cloning of lectin that induce cell apoptosis from Allium chinense. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:238-244. [PMID: 25765828 DOI: 10.1016/j.phymed.2014.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 10/20/2014] [Accepted: 12/14/2014] [Indexed: 06/04/2023]
Abstract
A 8.7 kDa lectin with high agglutin activity was isolated by affinity chromatography and cloned from Allium chinense in this study. For the MTT assay, approximately 60 µg/ml A. chinense lectin (ACL) inhibited 50% of the human hepatoma Hep-3B cells grown after 48 h. In addition, no antiproliferative effect was observed on normal human umbilical vein endothelial cells (HUVEC) even at 100 µg/ml concentration. After treatments with ACL on Hep-3B cells, morphologic changes in the nucleus and cytoskeleton were observed under laser scanning confocal microscopy with 4',6-diamidino-2-phenylindole and tubulin Alexa Fluor 488 staining; whereas, the mitochondrial membrane potential was observed through Mito Tracker Red CMXRos staining. The results showed that ACL led to cell morphology and structure change (e.g., round cell shrinkage). Moreover, ACL resulted in significant change in the shape of the nucleus, damaged the cytoskeleton when tubulin was degraded, and reduced the mitochondrial transmembrane potential. By contrast, no changes were observed on HUVEC cells under the same treatment conditions. DNA fragmentation analysis was used to detect DNA damage. Western blot showed that ACL upregulated caspase-3 and Bax expression during apoptosis and cloned the structural gene of ACL with an open reading frame of 456 bp encoding 151 amino acid residues. The results showed that ACL is a potential anticancer drug.
Collapse
Affiliation(s)
- Xiuqing Xiao
- College of Life Science, Hunan Normal University, Hunan Provincial Key Laboratory of Microbial Molecular Biology-State Key Laboratory Breeding Base of Microbial Molecular Biology, Changsha 410081, China
| | - Hao He
- College of Life Science, Hunan Normal University, Hunan Provincial Key Laboratory of Microbial Molecular Biology-State Key Laboratory Breeding Base of Microbial Molecular Biology, Changsha 410081, China
| | - Xuezhi Ding
- College of Life Science, Hunan Normal University, Hunan Provincial Key Laboratory of Microbial Molecular Biology-State Key Laboratory Breeding Base of Microbial Molecular Biology, Changsha 410081, China.
| | - Qi Yang
- College of Life Science, Hunan Normal University, Hunan Provincial Key Laboratory of Microbial Molecular Biology-State Key Laboratory Breeding Base of Microbial Molecular Biology, Changsha 410081, China
| | - Xuemei Liu
- College of Life Science, Hunan Normal University, Hunan Provincial Key Laboratory of Microbial Molecular Biology-State Key Laboratory Breeding Base of Microbial Molecular Biology, Changsha 410081, China
| | - Shuang Liu
- College of Life Science, Hunan Normal University, Hunan Provincial Key Laboratory of Microbial Molecular Biology-State Key Laboratory Breeding Base of Microbial Molecular Biology, Changsha 410081, China
| | - Jie Rang
- College of Life Science, Hunan Normal University, Hunan Provincial Key Laboratory of Microbial Molecular Biology-State Key Laboratory Breeding Base of Microbial Molecular Biology, Changsha 410081, China
| | - Ting Wang
- College of Life Science, Hunan Normal University, Hunan Provincial Key Laboratory of Microbial Molecular Biology-State Key Laboratory Breeding Base of Microbial Molecular Biology, Changsha 410081, China
| | - Mingxing Zuo
- College of Life Science, Hunan Normal University, Hunan Provincial Key Laboratory of Microbial Molecular Biology-State Key Laboratory Breeding Base of Microbial Molecular Biology, Changsha 410081, China
| | - Liqiu Xia
- College of Life Science, Hunan Normal University, Hunan Provincial Key Laboratory of Microbial Molecular Biology-State Key Laboratory Breeding Base of Microbial Molecular Biology, Changsha 410081, China.
| |
Collapse
|
8
|
Phloem-specific expression of the lectin gene from Allium sativum confers resistance to the sap-sucker Nilaparvata lugens. Biotechnol Lett 2014; 36:1059-67. [PMID: 24563293 DOI: 10.1007/s10529-014-1459-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 01/07/2014] [Indexed: 10/25/2022]
Abstract
Rice production is severely hampered by insect pests. Garlic lectin gene (ASAL) holds great promise in conferring protection against chewing (lepidopteran) and sap-sucking (homopteran) insect pests. We have developed transgenic rice lines resistant to sap-sucking brown hopper (Nilaparvata lugens) by ectopic expression of ASAL in their phloem tissues. Molecular analyses of T0 lines confirmed stable integration of transgene. T1 lines (NP 1-2, 4-3, 11-6 & 17-7) showed active transcription and translation of ASAL transgene. ELISA revealed ASAL expression was as high as 0.95% of total soluble protein. Insect bioassays on T2 homozygous lines (NP 18 & 32) revealed significant reduction (~74-83%) in survival rate, development and fecundity of brown hoppers in comparison to wild type. Transgenics exhibited enhanced resistance (1-2 score) against brown hoppers, minimal plant damage and no growth penalty or phenotypic abnormalities.
Collapse
|
9
|
Tajne S, Boddupally D, Sadumpati V, Vudem DR, Khareedu VR. Synthetic fusion-protein containing domains of Bt Cry1Ac and Allium sativum lectin (ASAL) conferred enhanced insecticidal activity against major lepidopteran pests. J Biotechnol 2014; 171:71-5. [DOI: 10.1016/j.jbiotec.2013.11.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 11/26/2013] [Accepted: 11/30/2013] [Indexed: 12/23/2022]
|
10
|
Sloggett JJ. Comment on “Invasive Harlequin Ladybird Carries Biological Weapons Against Native Competitors”. Science 2013; 341:1342. [DOI: 10.1126/science.1241827] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- John J. Sloggett
- Maastricht Science Programme, Maastricht University, P.O. Box 616, 6200 MD Maastricht, Netherlands
| |
Collapse
|
11
|
Vajhala CSK, Sadumpati VK, Nunna HR, Puligundla SK, Vudem DR, Khareedu VR. Development of transgenic cotton lines expressing Allium sativum agglutinin (ASAL) for enhanced resistance against major sap-sucking pests. PLoS One 2013; 8:e72542. [PMID: 24023750 PMCID: PMC3762794 DOI: 10.1371/journal.pone.0072542] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 07/10/2013] [Indexed: 12/29/2022] Open
Abstract
Mannose-specific Allium sativum leaf agglutinin encoding gene (ASAL) and herbicide tolerance gene (BAR) were introduced into an elite cotton inbred line (NC-601) employing Agrobacterium-mediated genetic transformation. Cotton transformants were produced from the phosphinothricin (PPT)-resistant shoots obtained after co-cultivation of mature embryos with the Agrobacterium strain EHA105 harbouring recombinant binary vector pCAMBIA3300-ASAL-BAR. PCR and Southern blot analysis confirmed the presence and stable integration of ASAL and BAR genes in various transformants of cotton. Basta leaf-dip assay, northern blot, western blot and ELISA analyses disclosed variable expression of BAR and ASAL transgenes in different transformants. Transgenes, ASAL and BAR, were stably inherited and showed co-segregation in T1 generation in a Mendelian fashion for both PPT tolerance and insect resistance. In planta insect bioassays on T2 and T3 homozygous ASAL-transgenic lines revealed potent entomotoxic effects of ASAL on jassid and whitefly insects, as evidenced by significant decreases in the survival, development and fecundity of the insects when compared to the untransformed controls. Furthermore, the transgenic cotton lines conferred higher levels of resistance (1-2 score) with minimal plant damage against these major sucking pests when bioassays were carried out employing standard screening techniques. The developed transgenics could serve as a potential genetic resource in recombination breeding aimed at improving the pest resistance of cotton. This study represents the first report of its kind dealing with the development of transgenic cotton resistant to two major sap-sucking insects.
Collapse
Affiliation(s)
| | - Vijaya Kumar Sadumpati
- Centre for Plant Molecular Biology, Osmania University, Hyderabad, Andhra Pradesh, India
| | | | | | | | | |
Collapse
|
12
|
Aboelhadid SM, Kamel AA, Arafa WM, Shokier KA. Effect of Allium sativum and Allium cepa oils on different stages of Boophilus annulatus. Parasitol Res 2013; 112:1883-90. [DOI: 10.1007/s00436-013-3344-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 02/04/2013] [Indexed: 01/18/2023]
|