1
|
The Effect of Curcuma phaeocaulis Valeton (Zingiberaceae) Extract on Prion Propagation in Cell-Based and Animal Models. Int J Mol Sci 2022; 24:ijms24010182. [PMID: 36613636 PMCID: PMC9820341 DOI: 10.3390/ijms24010182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/14/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Prion diseases are neurodegenerative disorders in humans and animals for which no therapies are currently available. Here, we report that Curcuma phaeocaulis Valeton (Zingiberaceae) (CpV) extract was partly effective in decreasing prion aggregation and propagation in both in vitro and in vivo models. CpV extract inhibited self-aggregation of recombinant prion protein (PrP) in a test tube assay and decreased the accumulation of scrapie PrP (PrPSc) in ScN2a cells, a cultured neuroblastoma cell line with chronic prion infection, in a concentration-dependent manner. CpV extract also modified the course of the disease in mice inoculated with mouse-adapted scrapie prions, completely preventing the onset of prion disease in three of eight mice. Biochemical and neuropathological analyses revealed a statistically significant reduction in PrPSc accumulation, spongiosis, astrogliosis, and microglia activation in the brains of mice that avoided disease onset. Furthermore, PrPSc accumulation in the spleen of mice was also reduced. CpV extract precluded prion infection in cultured cells as demonstrated by the modified standard scrapie cell assay. This study suggests that CpV extract could contribute to investigating the modulation of prion propagation.
Collapse
|
2
|
Mays CE, Trinh THT, Telling G, Kang HE, Ryou C. Endoproteolysis of cellular prion protein by plasmin hinders propagation of prions. Front Mol Neurosci 2022; 15:990136. [PMID: 36117913 PMCID: PMC9478470 DOI: 10.3389/fnmol.2022.990136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/15/2022] [Indexed: 01/21/2023] Open
Abstract
Many questions surround the underlying mechanism for the differential metabolic processing observed for the prion protein (PrP) in healthy and prion-infected mammals. Foremost, the physiological α-cleavage of PrP interrupts a region critical for both toxicity and conversion of cellular PrP (PrP C ) into its misfolded pathogenic isoform (PrP Sc ) by generating a glycosylphosphatidylinositol (GPI)-anchored C1 fragment. During prion diseases, alternative β-cleavage of PrP becomes prominent, producing a GPI-anchored C2 fragment with this particular region intact. It remains unexplored whether physical up-regulation of α-cleavage can inhibit disease progression. Furthermore, several pieces of evidence indicate that a disintegrin and metalloproteinase (ADAM) 10 and ADAM17 play a much smaller role in the α-cleavage of PrP C than originally believed, thus presenting the need to identify the primary protease(s) responsible. For this purpose, we characterized the ability of plasmin to perform PrP α-cleavage. Then, we conducted functional assays using protein misfolding cyclic amplification (PMCA) and prion-infected cell lines to clarify the role of plasmin-mediated α-cleavage during prion propagation. Here, we demonstrated an inhibitory role of plasmin for PrP Sc formation through PrP α-cleavage that increased C1 fragments resulting in reduced prion conversion compared with non-treated PMCA and cell cultures. The reduction of prion infectious titer in the bioassay of plasmin-treated PMCA material also supported the inhibitory role of plasmin on PrP Sc replication. Our results suggest that plasmin-mediated endoproteolytic cleavage of PrP may be an important event to prevent prion propagation.
Collapse
Affiliation(s)
- Charles E. Mays
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Trang H. T. Trinh
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, South Korea,Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, South Korea
| | - Glenn Telling
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, United States,Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY, United States,Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Hae-Eun Kang
- Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY, United States,Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States,Reference Laboratory for Chronic Wasting Disease (CWD), Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, South Korea,Hae-Eun Kang,
| | - Chongsuk Ryou
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, United States,Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, South Korea,Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, South Korea,Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY, United States,*Correspondence: Chongsuk Ryou,
| |
Collapse
|
3
|
Chan KH, Xue B, Robinson RC, Hauser CAE. Systematic Moiety Variations of Ultrashort Peptides Produce Profound Effects on Self-Assembly, Nanostructure Formation, Hydrogelation, and Phase Transition. Sci Rep 2017; 7:12897. [PMID: 29018249 PMCID: PMC5635115 DOI: 10.1038/s41598-017-12694-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/13/2017] [Indexed: 12/18/2022] Open
Abstract
Self-assembly of small biomolecules is a prevalent phenomenon that is increasingly being recognised to hold the key to building complex structures from simple monomeric units. Small peptides, in particular ultrashort peptides containing up to seven amino acids, for which our laboratory has found many biomedical applications, exhibit immense potential in this regard. For next-generation applications, more intricate control is required over the self-assembly processes. We seek to find out how subtle moiety variation of peptides can affect self-assembly and nanostructure formation. To this end, we have selected a library of 54 tripeptides, derived from systematic moiety variations from seven tripeptides. Our study reveals that subtle structural changes in the tripeptides can exert profound effects on self-assembly, nanostructure formation, hydrogelation, and even phase transition of peptide nanostructures. By comparing the X-ray crystal structures of two tripeptides, acetylated leucine-leucine-glutamic acid (Ac-LLE) and acetylated tyrosine-leucine-aspartic acid (Ac-YLD), we obtained valuable insights into the structural factors that can influence the formation of supramolecular peptide structures. We believe that our results have major implications on the understanding of the factors that affect peptide self-assembly. In addition, our findings can potentially assist current computational efforts to predict and design self-assembling peptide systems for diverse biomedical applications.
Collapse
Affiliation(s)
- Kiat Hwa Chan
- Institute of Bioengineering and Nanotechnology, Biopolis, A*STAR (Agency for Science, Technology and Research), Singapore, 138669, Singapore. .,Division of Science, Yale-NUS College, 16 College Avenue West, Singapore, 138527, Singapore.
| | - Bo Xue
- Institute of Molecular and Cell Biology, Biopolis, A*STAR (Agency for Science, Technology and Research), Singapore, 138673, Singapore.,NUS Synthetic Biology for Clinical and Technological Innovation, Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117597, Singapore
| | - Robert C Robinson
- Institute of Molecular and Cell Biology, Biopolis, A*STAR (Agency for Science, Technology and Research), Singapore, 138673, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117597, Singapore.,Research Institute for Interdisciplinary Science, Okayama University, Okayama, 700-8530, Japan
| | - Charlotte A E Hauser
- Institute of Bioengineering and Nanotechnology, Biopolis, A*STAR (Agency for Science, Technology and Research), Singapore, 138669, Singapore. .,Laboratory for Nanomedicine, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
4
|
Waqas M, Lee HM, Kim J, Telling G, Kim JK, Kim DH, Ryou C. Effect of poly-L-arginine in inhibiting scrapie prion protein of cultured cells. Mol Cell Biochem 2017; 428:57-66. [PMID: 28063003 DOI: 10.1007/s11010-016-2916-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/21/2016] [Indexed: 11/26/2022]
Abstract
Biological effect of poly-L-arginine (PLR), the linear homopolymer comprised of L-arginine, was investigated to determine the activity of suppressing prions. PLR decreased the level of scrapie prion protein (PrPSc) in cultured cells permanently infected with prions in a concentration-dependent manner. The PrPSc inhibition efficacy of PLR was greater than that of another prion-suppressant poly-L-lysine (PLK) in a molecular mass-dependent fashion. The effective concentration of PLR to inhibit prions was achieved safely below the cytotoxic concentrations, and overall cytotoxicity of PLR was similar to that of PLK. PLR did not alter the cellular prion protein (PrPC) level and was unable to change the states of preformed recombinant PrP aggregates and PrPSc from prion-infected cells. These data eliminate the possibility that the action mechanism of PLR is through removal of PrPC and pre-existing PrPSc. However, PLR formed complexes with plasminogen that stimulates prion propagation via conversion of PrPC to the misfolded isoform, PrPSc. The plasminogen-PLR complex demonstrated the greater positive surface charge values than the similar complex with PLK, raising the possibility that PLR interferes with the role of cofactor for PrPSc generation better than PLK.
Collapse
Affiliation(s)
- Muhammad Waqas
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Hye-Mi Lee
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Jeeyoung Kim
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Glenn Telling
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Jin-Ki Kim
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Dae-Hwan Kim
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Chongsuk Ryou
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Republic of Korea.
| |
Collapse
|
5
|
Kim DH, Lee HM, Ryou C. Evaluation of infective property of recombinant prion protein amyloids in cultured cells overexpressing cellular prion protein. J Korean Med Sci 2014; 29:1604-9. [PMID: 25469058 PMCID: PMC4248579 DOI: 10.3346/jkms.2014.29.12.1604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 11/06/2014] [Indexed: 11/22/2022] Open
Abstract
Misfolded isoform of prion protein (PrP), termed scrapie PrP (PrP(Sc)), tends to aggregate into various fibril forms. Previously, we reported various conditions that affect aggregation of recombinant PrP into amyloids. Because amyloidogenesis of PrP is closely associated with transmissible spongiform encephalopathies such as Creutzfeldt-Jakob disease in humans, we investigated infectivity of recombinant PrP amyloids generated in vitro. Using cultured cell lines which overexpress cellular PrP of different species, we measured the level of de novo synthesized PrP(Sc) in cells inoculated with recombinant mouse PrP amyloids. While PrP-overexpressing cells were susceptible to mouse-adapted scrapie prions used as the positive control, demonstrating the species barrier effect, infection with amyloids made of truncated recombinant PrP (PrP[89-230]) failed to form and propagate PrP(Sc) even in the cells that express mouse cellular PrP. This suggests that infectivity of PrP amyloids generated in vitro is different from that of natural prions. Recombinant PrP (89-230) amyloids tested in the current study retain no or a minute level, if any, of prion infectivity.
Collapse
Affiliation(s)
- Dae-Hwan Kim
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Korea
| | - Hye-Mi Lee
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Korea
| | - Chongsuk Ryou
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Korea
| |
Collapse
|