1
|
Tishchenko SV, Mikhailina AO, Lekontseva NV, Stolboushkina EA, Nikonova EY, Nikonov OS, Nikulin AD. Structural Investigations of RNA–Protein Complexes in Post-Ribosomal Era. CRYSTALLOGR REP+ 2021. [DOI: 10.1134/s1063774521050217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
Structural studies of RNA–protein complexes are important for understanding many molecular mechanisms occurring in cells (e.g., regulation of protein synthesis and RNA-chaperone activity of proteins). Various objects investigated at the Institute of Protein Research of the Russian Academy of Sciences are considered. Based on the analysis of the structures of the complexes of the ribosomal protein L1 with specific regions on both mRNA and rRNA, the principles of regulation of the translation of the mRNA of its own operon are presented. The studies of the heterotrimeric translation initiation factor IF2 of archaea and eukaryotes are described, and the data on the interaction of glycyl-tRNA-synthetase with viral IRES are reported. The results of studying the interaction of RNA molecules with one of functionally important sites of the Hfq protein are presented, and the differences in the RNA-binding properties of the Hfq and archaeal Lsm proteins are revealed.
Collapse
|
2
|
Balobanov V, Lekontseva N, Mikhaylina A, Nikulin A. Use of Fluorescent Nucleotides to Map RNA-Binding Sites on Protein Surface. Methods Mol Biol 2021; 2113:251-262. [PMID: 32006319 DOI: 10.1007/978-1-0716-0278-2_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Currently, studies of RNA/protein interactions occupy a prominent place in molecular biology and medicine. The structures of RNA-protein complexes may be determined by X-ray crystallography or NMR for further analyses. These methods are time-consuming and difficult due to the versatility and dynamics of the RNA structure. Furthermore, due to the need to solve the "phase problem" for each dataset in crystallography, crystallographic structures of RNA are still underrepresented. Structure determination of single ribonucleotide-protein complexes is a useful tool to identify the position of single-stranded RNA-binding sites in proteins. We describe here a structural approach that incorporates affinity measurement of a protein for various single ribonucleotides, ranking the RNA/protein complexes according to their stability. This chapter describes how to perform these measurements, including a perspective for the analysis of RNA-binding sites in protein and single-nucleotide crystal soaking.
Collapse
Affiliation(s)
- V Balobanov
- Institute of Protein Research Russian Academy of Sciences, Pushchino, Moscow Region, Russia.
| | - N Lekontseva
- Institute of Protein Research Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - A Mikhaylina
- Institute of Protein Research Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - A Nikulin
- Institute of Protein Research Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| |
Collapse
|
3
|
Lekontseva N, Mikhailina A, Fando M, Kravchenko O, Balobanov V, Tishchenko S, Nikulin A. Crystal structures and RNA-binding properties of Lsm proteins from archaea Sulfolobus acidocaldarius and Methanococcus vannielii: Similarity and difference of the U-binding mode. Biochimie 2020; 175:1-12. [PMID: 32422160 DOI: 10.1016/j.biochi.2020.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/13/2022]
Abstract
Sm and Sm-like (Lsm) proteins are considered as an evolutionary conserved family involved in RNA metabolism in organisms from bacteria and archaea to human. Currently, the function of Sm-like archaeal proteins (SmAP) is not well understood. Here, we report the crystal structures of SmAP proteins from Sulfolobus acidocaldarius and Methanococcus vannielii and a comparative analysis of their RNA-binding sites. Our data show that these SmAPs have only a uridine-specific RNA-binding site, unlike their bacterial homolog Hfq, which has three different RNA-binding sites. Moreover, variations in the amino acid composition of the U-binding sites of the two SmAPs lead to a difference in protein affinity for oligo(U) RNA. Surface plasmon resonance data and nucleotide-binding analysis confirm the high affinity of SmAPs for uridine nucleotides and oligo(U) RNA and the reduced affinity for adenines, guanines, cytidines and corresponding oligo-RNAs. In addition, we demonstrate that MvaSmAP1 and SacSmAP2 are capable of melting an RNA hairpin and, apparently, promote its interaction with complementary RNA.
Collapse
Affiliation(s)
- N Lekontseva
- Institute of Protein Research Russian Academy of Sciences, Institutskaya 4, Moscow Region, Pushchino, 142290, Russia
| | - A Mikhailina
- Institute of Protein Research Russian Academy of Sciences, Institutskaya 4, Moscow Region, Pushchino, 142290, Russia
| | - M Fando
- Institute of Protein Research Russian Academy of Sciences, Institutskaya 4, Moscow Region, Pushchino, 142290, Russia
| | - O Kravchenko
- Institute of Protein Research Russian Academy of Sciences, Institutskaya 4, Moscow Region, Pushchino, 142290, Russia
| | - V Balobanov
- Institute of Protein Research Russian Academy of Sciences, Institutskaya 4, Moscow Region, Pushchino, 142290, Russia
| | - S Tishchenko
- Institute of Protein Research Russian Academy of Sciences, Institutskaya 4, Moscow Region, Pushchino, 142290, Russia
| | - A Nikulin
- Institute of Protein Research Russian Academy of Sciences, Institutskaya 4, Moscow Region, Pushchino, 142290, Russia.
| |
Collapse
|