1
|
Guan X, Yu L, Wang A. Genome-Wide Identification and Characterization of Aldo-Keto Reductase ( AKR) Gene Family in Response to Abiotic Stresses in Solanum lycopersicum. Int J Mol Sci 2023; 24:ijms24021272. [PMID: 36674784 PMCID: PMC9865680 DOI: 10.3390/ijms24021272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Tomato is one of the most popular and nutritious vegetables worldwide, but their production and quality are threatened by various stresses in the environment in which they are grown. Thus, the resistance and tolerance of tomatoes to various biotic and abiotic stresses should be improved. Aldo-keto reductases (AKR) are a superfamily of NAD(P)(H)-dependent oxidoreductases that play multiple roles in abiotic and biotic stress defenses by detoxification and reactive oxygen species (ROS) clearance pathways. Here, 28 identified AKR family genes of tomatoes were identified genome-wide, and their characteristics, including chromosomal location, gene structures, protein motifs, and system evolution, were analyzed. Furthermore, the phylogenetic and syntenic relationships in Arabidopsis thaliana, rice, and tomatoes were compared. Expression patterns at different tissues and in response to abiotic stresses, such as drought and salt, were monitored to further explore the function of SlAKRs. Finally, three SlAKRs candidate genes were silenced by Virus induced gene silencing (VIGS) systems in Solanum lycopersicum, showing sensitivity to drought and salt stresses with low contents of proline (Pro) and peroxidase (POD) and high content of malonaldehyde (MDA). This study provides the characteristics and potential functions of SlAKRs in response to abiotic stresses that will be helpful for further studies in S. lycopersicum.
Collapse
Affiliation(s)
| | | | - Aoxue Wang
- Correspondence: ; Tel.: +86-45-1551-90443
| |
Collapse
|
2
|
Javidi MR, Maali-Amiri R, Poormazaheri H, Sadeghi Niaraki M, Kariman K. Cold stress-induced changes in metabolism of carbonyl compounds and membrane fatty acid composition in chickpea. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 192:10-19. [PMID: 36201983 DOI: 10.1016/j.plaphy.2022.09.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
In this study, changes in membrane fatty acid (FA) composition and damage indices contents as well as the transcript patterns of carbonyl-detoxifying genes were evaluated in two chickpea (Cicer arietinum L.) genotypes, cold-tolerant Sel96th11439 and cold-sensitive ILC533 under cold stress (CS; 4 °C). During CS, H2O2 and malondialdehyde (MDA) contents increased (by 47% and 57%, respectively) in the sensitive genotype, while these contents remained unchanged in the tolerant genotype. In tolerant plants, higher content of linoleic, linolenic, unsaturated FAs (UFAs), total FAs and double bond index (DBI) (by 23, 21, 19, 17 and 9%, respectively) was observed at 6 days after stress (DAS) compared to sensitive plants, which, along with alterations of the damage indices, indicate their enhanced tolerance to CS. Compared with the sensitive genotype, less lipoxygenase (LOX) activity (by 59%) in the tolerant genotype was accompanied by decreased MDA and increased levels of UFAs and DBI during CS, particularly at 6 DAS. Upregulation of aldehyde dehydrogenase and aldo-keto reductase genes (by 9- and 10-fold, respectively) at 1 DAS, along with the enhanced transcript levels of aldehyde reductase and 2-alkenal reductase (by 3- and 14.7-fold, respectively) at 6 DAS were accompanied by increased UFAs and reduced MDA contents in the tolerant genotype. Overall, the results suggest that cold tolerance in chickpea was partly associated with regulation of membrane FA compositions and the potential metabolic networks involved in synthesis and degradation of carbonyl compounds.
Collapse
Affiliation(s)
- Mohammad Reza Javidi
- Department of Agronomy and Plant Breeding, University College of Agriculture and Natural Resources, University of Tehran, 31587-77871, Karaj, Iran
| | - Reza Maali-Amiri
- Department of Agronomy and Plant Breeding, University College of Agriculture and Natural Resources, University of Tehran, 31587-77871, Karaj, Iran.
| | - Helen Poormazaheri
- Department of Agronomy and Plant Breeding, University College of Agriculture and Natural Resources, University of Tehran, 31587-77871, Karaj, Iran
| | - Mina Sadeghi Niaraki
- Department of Agronomy and Plant Breeding, University College of Agriculture and Natural Resources, University of Tehran, 31587-77871, Karaj, Iran
| | - Khalil Kariman
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
3
|
Songsiriritthigul C, Narawongsanont R, Tantitadapitak C, Guan HH, Chen CJ. Structure-function study of AKR4C14, an aldo-keto reductase from Thai jasmine rice (Oryza sativa L. ssp. indica cv. KDML105). ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2020; 76:472-483. [PMID: 32355043 DOI: 10.1107/s2059798320004313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 03/30/2020] [Indexed: 11/10/2022]
Abstract
Aldo-keto reductases (AKRs) are NADPH/NADP+-dependent oxidoreductase enzymes that metabolize an aldehyde/ketone to the corresponding alcohol. AKR4C14 from rice exhibits a much higher efficiency in metabolizing malondialdehyde (MDA) than do the Arabidopsis enzymes AKR4C8 and AKR4C9, despite sharing greater than 60% amino-acid sequence identity. This study confirms the role of rice AKR4C14 in the detoxification of methylglyoxal and MDA, and demonstrates that the endogenous contents of both aldehydes in transgenic Arabidopsis ectopically expressing AKR4C14 are significantly lower than their levels in the wild type. The apo structure of indica rice AKR4C14 was also determined in the absence of the cofactor, revealing the stabilized open conformation. This is the first crystal structure in AKR subfamily 4C from rice to be observed in the apo form (without bound NADP+). The refined AKR4C14 structure reveals a stabilized open conformation of loop B, suggesting the initial phase prior to cofactor binding. Based on the X-ray crystal structure, the substrate- and cofactor-binding pockets of AKR4C14 are formed by loops A, B, C and β1α1. Moreover, the residues Ser211 and Asn220 on loop B are proposed as the hinge residues that are responsible for conformational alteration while the cofactor binds. The open conformation of loop B is proposed to involve Phe216 pointing out from the cofactor-binding site and the opening of the safety belt. Structural comparison with other AKRs in subfamily 4C emphasizes the role of the substrate-channel wall, consisting of Trp24, Trp115, Tyr206, Phe216, Leu291 and Phe295, in substrate discrimination. In particular, Leu291 could contribute greatly to substrate selectivity, explaining the preference of AKR4C14 for its straight-chain aldehyde substrate.
Collapse
Affiliation(s)
- Chomphunuch Songsiriritthigul
- Synchrotron Light Research Institute (Public Organization), 111 University Avenue, Nakhon Ratchasima 30000, Thailand
| | - Rawint Narawongsanont
- Department of Biochemistry, Faculty of Science, Kasetsart University, Pahonyothin Road, Bangkok 10903, Thailand
| | - Chonticha Tantitadapitak
- Department of Biochemistry, Faculty of Science, Kasetsart University, Pahonyothin Road, Bangkok 10903, Thailand
| | - Hong Hsiang Guan
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| | - Chun Jung Chen
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| |
Collapse
|
4
|
Chen L, Bao F, Tang S, Zuo E, Lv Q, Zhang D, Hu Y, Wang X, He Y. PpAKR1A, a Novel Aldo-Keto Reductase from Physcomitrella Patens, Plays a Positive Role in Salt Stress. Int J Mol Sci 2019; 20:ijms20225723. [PMID: 31739643 PMCID: PMC6888457 DOI: 10.3390/ijms20225723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 12/30/2022] Open
Abstract
The moss Physcomitrella patens is tolerant of highly saline environments. In plants, salinity stress may induce the production of toxic reactive carbonyl species (RCS) and oxidative damage. Aldo-keto reductases (AKRs) are a large group of NADP-dependent oxidoreductases involved in RCS detoxification. However, many members in this superfamily remain uncharacterized. In this study, we cloned and characterised a putative AKR1 from P. patens, named PpAKR1A. Notably, the transcription level of PpAKR1A was induced by salt and methylglyoxal (MG) stress, and the recombinant PpAKR1A protein catalysed the reduction of toxic aldehydes. PpAKR1A knockout mutants of P. patens (ppakr1a) were sensitive to NaCl and MG treatment, as indicated by much lower concentrations of chlorophyll and much higher concentrations of MG and H2O2 than those in WT plants. Meanwhile, ppakr1a plants exhibited decreases in the MG-reducing activity and reactive oxygen species-scavenging ability in response to salt stress, possibly due to decreases in the activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD). Our results indicate that PpAKR1A is an aldo-keto reductase that detoxifies MG and thus plays an important role in salt stress tolerance in P. patens.
Collapse
Affiliation(s)
- Lu Chen
- College of Life Sciences, Capital Normal University, Beijing 100048, China; (L.C.); (F.B.); (S.T.); (E.Z.); (Q.L.); (D.Z.); (Y.H.)
| | - Fang Bao
- College of Life Sciences, Capital Normal University, Beijing 100048, China; (L.C.); (F.B.); (S.T.); (E.Z.); (Q.L.); (D.Z.); (Y.H.)
| | - Shuxuan Tang
- College of Life Sciences, Capital Normal University, Beijing 100048, China; (L.C.); (F.B.); (S.T.); (E.Z.); (Q.L.); (D.Z.); (Y.H.)
| | - Enhui Zuo
- College of Life Sciences, Capital Normal University, Beijing 100048, China; (L.C.); (F.B.); (S.T.); (E.Z.); (Q.L.); (D.Z.); (Y.H.)
| | - Qiang Lv
- College of Life Sciences, Capital Normal University, Beijing 100048, China; (L.C.); (F.B.); (S.T.); (E.Z.); (Q.L.); (D.Z.); (Y.H.)
| | - Dongyang Zhang
- College of Life Sciences, Capital Normal University, Beijing 100048, China; (L.C.); (F.B.); (S.T.); (E.Z.); (Q.L.); (D.Z.); (Y.H.)
| | - Yong Hu
- College of Life Sciences, Capital Normal University, Beijing 100048, China; (L.C.); (F.B.); (S.T.); (E.Z.); (Q.L.); (D.Z.); (Y.H.)
| | - Xiaoqin Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China
- Correspondence: (X.W.); (Y.H.); Tel.: +86-10-68903089 (Y.H.)
| | - Yikun He
- College of Life Sciences, Capital Normal University, Beijing 100048, China; (L.C.); (F.B.); (S.T.); (E.Z.); (Q.L.); (D.Z.); (Y.H.)
- Correspondence: (X.W.); (Y.H.); Tel.: +86-10-68903089 (Y.H.)
| |
Collapse
|
5
|
Yang P, Yu S, Hao J, Liu W, Zhao Z, Zhu Z, Sun T, Wang X, Song Q. Genome sequence of the Chinese white wax scale insect Ericerus pela: the first draft genome for the Coccidae family of scale insects. Gigascience 2019; 8:giz113. [PMID: 31518402 PMCID: PMC6743827 DOI: 10.1093/gigascience/giz113] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 06/11/2019] [Accepted: 08/20/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The Chinese white wax scale insect, Ericerus pela, is best known for producing wax, which has been widely used in candle production, casting, Chinese medicine, and wax printing products for thousands of years. The secretion of wax, and other unusual features of scale insects, is thought to be an adaptation to their change from an ancestral ground-dwelling lifestyle to a sedentary lifestyle on the higher parts of plants. As well as helping to improve its economic value, studies of E. pela might also help to explain the adaptation of scale insects. However, no genomic data are currently available for E. pela. FINDINGS To assemble the E. pela genome, 303.92 Gb of data were generated using Illumina and Pacific Biosciences sequencing, producing 277.22 Gb of clean data for assembly. The assembled genome size was 0.66 Gb, with 1,979 scaffolds and a scaffold N50 of 735 kb. The guanine + cytosine content was 33.80%. A total of 12,022 protein-coding genes were predicted, with a mean coding sequence length of 1,370 bp. Twenty-six fatty acyl-CoA reductase genes and 35 acyltransferase genes were identified. Evolutionary analysis revealed that E. pela and aphids formed a sister group and split ∼241.1 million years ago. There were 214 expanded gene families and 2,219 contracted gene families in E. pela. CONCLUSION We present the first genome sequence from the Coccidae family. These results will help to increase our understanding of the evolution of unique features in scale insects, and provide important genetic information for further research.
Collapse
Affiliation(s)
- Pu Yang
- Research Institute of Resource Insects, Chinese Academy of Forestry, Key Laboratory of Cultivating and Utilization of Resource Insects of State Forestry Administration, Kunming 650224, China
| | - Shuhui Yu
- College of Agriculture and Life Sciences, Kunming University, Kunming 650214, China
| | - Junjun Hao
- State Key Laboratory of Genetic Resources and Evolution, Laboratory of Evolutionary and Functional Genomics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China
| | - Wei Liu
- Research Institute of Resource Insects, Chinese Academy of Forestry, Key Laboratory of Cultivating and Utilization of Resource Insects of State Forestry Administration, Kunming 650224, China
| | - Zunling Zhao
- Research Institute of Resource Insects, Chinese Academy of Forestry, Key Laboratory of Cultivating and Utilization of Resource Insects of State Forestry Administration, Kunming 650224, China
| | - Zengrong Zhu
- State Key Laboratory of Rice Biology/Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture/Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tao Sun
- Research Institute of Resource Insects, Chinese Academy of Forestry, Key Laboratory of Cultivating and Utilization of Resource Insects of State Forestry Administration, Kunming 650224, China
| | - Xueqing Wang
- Research Institute of Resource Insects, Chinese Academy of Forestry, Key Laboratory of Cultivating and Utilization of Resource Insects of State Forestry Administration, Kunming 650224, China
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|