1
|
Yuan Y, Shen J, Salmon S. Developing Enzyme Immobilization with Fibrous Membranes: Longevity and Characterization Considerations. MEMBRANES 2023; 13:membranes13050532. [PMID: 37233593 DOI: 10.3390/membranes13050532] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/14/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
Fibrous membranes offer broad opportunities to deploy immobilized enzymes in new reactor and application designs, including multiphase continuous flow-through reactions. Enzyme immobilization is a technology strategy that simplifies the separation of otherwise soluble catalytic proteins from liquid reaction media and imparts stabilization and performance enhancement. Flexible immobilization matrices made from fibers have versatile physical attributes, such as high surface area, light weight, and controllable porosity, which give them membrane-like characteristics, while simultaneously providing good mechanical properties for creating functional filters, sensors, scaffolds, and other interface-active biocatalytic materials. This review examines immobilization strategies for enzymes on fibrous membrane-like polymeric supports involving all three fundamental mechanisms of post-immobilization, incorporation, and coating. Post-immobilization offers an infinite selection of matrix materials, but may encounter loading and durability issues, while incorporation offers longevity but has more limited material options and may present mass transfer obstacles. Coating techniques on fibrous materials at different geometric scales are a growing trend in making membranes that integrate biocatalytic functionality with versatile physical supports. Biocatalytic performance parameters and characterization techniques for immobilized enzymes are described, including several emerging techniques of special relevance for fibrous immobilized enzymes. Diverse application examples from the literature, focusing on fibrous matrices, are summarized, and biocatalyst longevity is emphasized as a critical performance parameter that needs increased attention to advance concepts from lab scale to broader utilization. This consolidation of fabrication, performance measurement, and characterization techniques, with guiding examples highlighted, is intended to inspire future innovations in enzyme immobilization with fibrous membranes and expand their uses in novel reactors and processes.
Collapse
Affiliation(s)
- Yue Yuan
- Center for Nanophase Materials and Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Fiber and Polymer Science Program, Department of Textile Engineering Chemistry & Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Jialong Shen
- Fiber and Polymer Science Program, Department of Textile Engineering Chemistry & Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Sonja Salmon
- Fiber and Polymer Science Program, Department of Textile Engineering Chemistry & Science, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
2
|
Liu Y, Sulaiman HF, Johnson BR, Ma R, Gao Y, Fernando H, Amarasekara A, Ashley-Oyewole A, Fan H, Ingram HN, Briggs JM. QM/MM study of N501 involved intermolecular interaction between SARS-CoV-2 receptor binding domain and antibody of human origin. Comput Biol Chem 2023; 102:107810. [PMID: 36610304 PMCID: PMC9811887 DOI: 10.1016/j.compbiolchem.2023.107810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
Intermolecular interaction between key residue N501 of the epitope on SARS-CoV-2 RBD and screening antibody B38 was studied using the QM/MM and QM approach. The QM/MM optimized geometry shows that angle X-H---Y is 165° for O-H---O between mAb light chain S30 and RBD N501. High level MP2 calculations indicated the interaction between RBD N501 and S30 of B38 Fab light chain provide a relatively strong attractive force of - 3.32 kcal/mol, whereas the hydrogen bond between RBD Q498 and S30 was quantified as 0.10 kcal/mol. The decrease in ESP partial charge on hydrogen atom of hydroxyl group on S30 drops from 0.38 a.u. to 0.31 a.u., exhibiting the sharing of 0.07 a.u. from the lone pair electron oxygen of N501 due to hydrogen bond formation. The NBO occupancy of hydrogen atom also decreases from 25.79 % to 22.93 % in the hydroxyl H-O NBO bond of S30. However, the minor change of NBO hybridization of hydroxyl oxygen of S30 from sp3.00 to sp3.05 implies the rigidity of hydrogen bond tetrahedral geometry in the relative dynamic protein complex. The O-H---O angle is 165° which is close but not exactly linear. The structural requirement for sp3 hybridization of oxygen for hydroxyl group on S30 and dimension of protein likely prevent O-H---O from adopting linear geometry. The hydrogen bond strengths were also calculated using a variety of DFT methods, and the result of - 3.33 kcal/mol from the M06L method is the closest to that of the MP2 calculation. Results of this work may aid in the COVID-19 vaccine and drug screening.
Collapse
Affiliation(s)
- Yuemin Liu
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, the United States of America,Department of Chemistry, Rice University, Houston, TX 77005, the United States of America,Corresponding author at: Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, the United States of America
| | - Hana F. Sulaiman
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, the United States of America
| | - Bruce R. Johnson
- Department of Chemistry, Rice University, Houston, TX 77005, the United States of America
| | - Rulong Ma
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77004, the United States of America
| | - Yunxiang Gao
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, the United States of America
| | - Harshica Fernando
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, the United States of America
| | - Ananda Amarasekara
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, the United States of America
| | - Andrea Ashley-Oyewole
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, the United States of America
| | - Huajun Fan
- College of Chemical Engineering, Sichuan University Science and Engineering, Zigong, Sichuan 643000, PR China
| | - Heaven N. Ingram
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, the United States of America
| | - James M. Briggs
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77004, the United States of America
| |
Collapse
|
3
|
Allen BP, Wright ZM, Taylor HF, Oweida TJ, Kader-Pinky S, Patteson EF, Bucci KM, Cox CA, Senthilvel AS, Yingling YG, Knight AS. Mapping the Morphological Landscape of Oligomeric Di-block Peptide-Polymer Amphiphiles. Angew Chem Int Ed Engl 2022; 61:e202115547. [PMID: 35037351 PMCID: PMC8957712 DOI: 10.1002/anie.202115547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Indexed: 11/07/2022]
Abstract
Peptide-polymer amphiphiles (PPAs) are tunable hybrid materials that achieve complex assembly landscapes by combining the sequence-dependent properties of peptides with the structural diversity of polymers. Despite their promise as biomimetic materials, determining how polymer and peptide properties simultaneously affect PPA self-assembly remains challenging. We herein present a systematic study of PPA structure-assembly relationships. PPAs containing oligo(ethyl acrylate) and random-coil peptides were used to determine the role of oligomer molecular weight, dispersity, peptide length, and charge density on self-assembly. We observed that PPAs predominantly formed spheres rather than anisotropic particles. Oligomer molecular weight and peptide hydrophilicity dictated morphology, while dispersity and peptide charge affected particle size. These key benchmarks will facilitate the rational design of PPAs that expand the scope of biomimetic functionality within assembled soft materials.
Collapse
Affiliation(s)
- Benjamin P Allen
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zoe M Wright
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hailey F Taylor
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Thomas J Oweida
- Department of Material Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Sabila Kader-Pinky
- Department of Material Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Emily F Patteson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kara M Bucci
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Caleb A Cox
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Abishec Sundar Senthilvel
- Department of Material Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Yaroslava G Yingling
- Department of Material Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Abigail S Knight
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
4
|
Allen BP, Wright ZM, Taylor HF, Oweida TJ, Kader-Pinky S, Patteson EF, Bucci KM, Cox CA, Senthilvel AS, Yingling YG, Knight AS. Mapping the Morphological Landscape of Oligomeric Di‐block Peptide‐Polymer Amphiphiles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Benjamin P. Allen
- University of North Carolina at Chapel Hill College of Arts and Sciences Chemistry UNITED STATES
| | - Zoe M. Wright
- University of North Carolina at Chapel Hill College of Arts and Sciences Chemistry UNITED STATES
| | - Hailey F. Taylor
- University of North Carolina at Chapel Hill College of Arts and Sciences Chemistry UNITED STATES
| | - Thomas J. Oweida
- North Carolina State University at Raleigh: NC State University Materials Science and Engineering UNITED STATES
| | - Sabila Kader-Pinky
- North Carolina State University at Raleigh: NC State University Materials Science and Engineering UNITED STATES
| | - Emily F. Patteson
- University of North Carolina at Chapel Hill Kenan Science Library: The University of North Carolina at Chapel Hill Chemistry UNITED STATES
| | - Kara M. Bucci
- University of North Carolina at Chapel Hill College of Arts and Sciences Chemistry UNITED STATES
| | - Caleb A. Cox
- University of North Carolina at Chapel Hill College of Arts and Sciences Chemistry UNITED STATES
| | - Abishec Sundar Senthilvel
- North Carolina State University at Raleigh: NC State University Materials Science and Engineering UNITED STATES
| | | | - Abigail S. Knight
- University of North Carolina at Chapel Hill Chemistry 319 CaudillUNC-Chapel Hill 27599 Chapel Hill UNITED STATES
| |
Collapse
|
5
|
Barbee MH, Wright ZM, Allen BP, Taylor HF, Patteson EF, Knight AS. Protein-Mimetic Self-Assembly with Synthetic Macromolecules. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02826] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Meredith H. Barbee
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Zoe M. Wright
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Benjamin P. Allen
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Hailey F. Taylor
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Emily F. Patteson
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Abigail S. Knight
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
6
|
Rubinson KA, Mountain RD. Ion and water transport reasonably involves rotation and pseudorotation: measurement and modeling the temperature dependence of small-angle neutron scattering from aqueous SrI 2. Phys Chem Chem Phys 2020; 22:13479-13488. [PMID: 32525150 DOI: 10.1039/d0cp02088e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
X-ray and neutron scattering have provided insight into the short range (<8 Å) structures of ionic solutions for over a century. For longer distances, single scattering bands have, however, been seen. For the non-hydrolyzing salt SrI2 in aqueous (D2O) solution, a structure sufficient to scatter slow neutrons has been seen to persist down to a concentration of 0.1 mol L-1 where the measured average spacing between scatterers is over 20 Å. Theoretical studies of such long distance solution structures are difficult, and these difficulties are discussed. The width of the distribution in distances between the scatterers (ions, ion pairs, etc.) remains less than 10 Å, which approximates the average size of the ions and their first hydration shell. Here, we measure the temperature dependence from 10 °C to 90 °C of the small angle neutron scattering (SANS) by a 0.5 molar SrI2 solution in D2O and find that this surprisingly narrow distribution of the distances remains constant within experimental uncertainty. This structure of the ions in the solution appears to endure because changes in interion distances along any single spatial dimension require displacements near the size of a water molecule. Together, the experimental measurements support a rotatory mechanism for simultaneous ion transport and water countertransport. Since rotation minimizes displacement of the solution framework, it is suggested that water transport alone also involves rotation of multimolecular structures, and that the interpretation of single-molecule water rotation is confounded by pseudorotation that results from paired picosecond proton exchanges. It is pointed out that NMR-determined millisecond to microsecond proton exchange times of chelated-metal-ion bound waters and the much faster chelate rotational correlation times around 10 picoseconds, both of which require making and breaking of hydrogen bonds, are difficult to impossible to reconcile.
Collapse
Affiliation(s)
- Kenneth A Rubinson
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH 45435, USA. and NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| | - Raymond D Mountain
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| |
Collapse
|