1
|
Arikan FB, Ulas M, Ustundag Y, Boyunaga H, Badem ND. Investigation of the relationship between betatrophin and certain key enzymes involved in carbohydrate and lipid metabolism in insulin-resistant mice. Horm Mol Biol Clin Investig 2023; 44:311-320. [PMID: 36869875 DOI: 10.1515/hmbci-2022-0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/08/2023] [Indexed: 03/05/2023]
Abstract
OBJECTIVES The present study sought to examine the relationship of betatrophin with certain key enzymes, namely lactate dehydrogenase-5 (LDH5), citrate synthase (CS), and acetyl-CoA carboxylase-1 (ACC1), in insulin-resistant mice. METHODS Eight-week-old male C57BL6/J mice were used in this study (experimental group n=10 and control group n=10). S961 was administered using an osmotic pump to induce insulin resistance in the mice. The betatrophin, LDH5, CS, and ACC1 expression levels were determined from the livers of the mice using the real-time polymerase chain reaction (RT-PCR) method. Moreover, biochemical parameters such as the serum betatrophin, fasting glucose, insulin, triglyceride, total cholesterol, and high-density lipoprotein (HDL) and low-density lipoprotein (LDL) cholesterol levels were analyzed. RESULTS The betatrophin expression and serum betatrophin (p=0.000), fasting glucose, insulin, triglyceride (p≤0.001), and total cholesterol (p=0.013) levels were increased in the experimental group. In addition, the CS gene expression level was statistically significantly decreased in the experimental group (p=0.01). Although strong correlation was found between the expression and serum betatrophin and triglyceride levels, no correlation was found between the betatrophin gene expression and the LDH5, ACC1, and CS gene expression levels. CONCLUSIONS The betatrophin level appears to play an important role in the regulation of triglyceride metabolism, while insulin resistance increases both the betatrophin gene expression and serum levels and decreases the CS expression level. The findings suggest that betatrophin may not regulate carbohydrate metabolism through CS and LDH5 or lipid metabolism directly through the ACC1 enzyme.
Collapse
Affiliation(s)
- Funda Bulut Arikan
- Faculty of Medicine, Department of Physiology, Kırıkkale University, Kırıkkale, Türkiye
| | - Mustafa Ulas
- Faculty of Medicine, Department of Physiology, Fırat University, Elazığ, Türkiye
| | - Yasemin Ustundag
- Faculty of Veterinary, Department of Anatomy, Dokuz Eylul University, Izmir, Türkiye
| | - Hakan Boyunaga
- Faculty of Medicine, Medical Biochemistry Department, Medipol University, Ankara, Türkiye
| | - Nermin Dindar Badem
- Department of Medical Biochemistry, Health Sciences University, Gülhane Training and Research Hospital, Ankara, Türkiye
| |
Collapse
|
2
|
Dong R, Wang Z, Zhao Q, Yan Y, Jiang Q. Molecular characterization and immune functions of lipasin in Nile tilapia (Oreochromis niloticus): Involvement in the regulation of tumor necrosis factor-α secretion. FISH & SHELLFISH IMMUNOLOGY 2023; 133:108549. [PMID: 36646336 DOI: 10.1016/j.fsi.2023.108549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Lipasin, the product of the angiopoietin-like 8 (angptl8) gene, is known as a critical regulator of plasma lipid metabolism. However, its immune function in vertebrates is currently poorly understood. By 5'/3'-rapid amplification of cDNA ends (RACE), we established the structural identity of Nile tilapia (Oreochromis niloticus) angptl8. The transcripts of tilapia angptl8 were widely expressed in various tissues, with the highest levels in the liver. Following lipopolysaccharide in vivo challenges, time-dependent angptl8 gene expression was observed in the head kidney and liver. On the basis of the sequence obtained, we produced recombinant lipasin that inhibited lipoprotein lipase activity. Treatment of head kidney leukocytes with lipasin stimulated tumor necrosis factor-α (TNF-α) secretion and gene expression. In addition, lipasin-induced TNF-α secretion could be prevented by inhibiting the nuclear factor-kappa B (NF-κB) signaling pathway. Furthermore, lipasin enhanced the phosphorylation and degradation of IκBα and promoted translocation of the p65 subunit of NF-κB to the nucleus. Collectively, the current findings suggested that lipasin was involved in the immune response of Nile tilapia and stimulated TNF-α secretion by activating the NF-κB pathway in tilapia head kidney leukocytes.
Collapse
Affiliation(s)
- Rui Dong
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Zixi Wang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Qianqian Zhao
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Yisha Yan
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Quan Jiang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China.
| |
Collapse
|
3
|
Susanto H, Sugiharto, Taufiq A, Pranoto A, Dwi Trijoyo Purnomo J. Dynamic alteration of plasma levels of betatrophin in younger female onset obesity post acute moderate-intensity exercise training. Saudi J Biol Sci 2023; 30:103546. [PMID: 36624736 PMCID: PMC9823226 DOI: 10.1016/j.sjbs.2022.103546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/19/2022] [Accepted: 12/17/2022] [Indexed: 12/25/2022] Open
Abstract
Obesity is a global metabolic disease anchored by a lack of physical activity lipid disturbances. Hitherto, betatrophin is a potential liver-derived hormone that regulates lipid metabolism. A total of 26 selected onset obese individuals (BMI range ± 28-31) were enrolled in this study and given moderate-intensity exercise. Importantly, our data show that acute moderate-intensity interval exercise (MIIE) and acute moderate-intensity continue to exercise (MICE) for 40 min significantly decrease the plasma level of full-length betatrophin respectively (174.18 ± 48.19 ng/mL; 182.31 ± 52.69 ng/mL), compared to the placebo (283.97 ± 32.23 ng/mL) post 10 min and 6 h exercise treatment (p ≤ 0.05). The plasma level of betatrophin was significantly and negatively correlated with BMI (r = - 0.412, p = 0.037), fasting blood glucose (r = - 0.390, p = 0.049), and positively correlated with VO2max (r = 0.456, p = 0.019). In addition, the linear and ordinal logistic regression analysis shows that betatrophin, is a potential predictor for BMI [estimate value = 0.995, p = 0.037 and OR (95 % CI) = 0.992 (0.0984-1.00), p = 0,048]. In summary, our data demonstrate that the circulating levels of betatrophin were decreased after acute moderate-intensity exercise training.
Collapse
Affiliation(s)
- Hendra Susanto
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Malang, East Java 65145, Indonesia,Corresponding author at: Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Semarang No. 5 Street, Malang, East Java 65145, Indonesia.
| | - Sugiharto
- Department of Sports Science, Faculty of Sports Science, Universitas Negeri Malang, Malang, East Java 65145, Indonesia
| | - Ahmad Taufiq
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Malang, East Java 65145, Indonesia
| | - Adi Pranoto
- Doctoral Program of Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java 60132, Indonesia
| | - Jerry Dwi Trijoyo Purnomo
- Department of Statistics, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya, East Java 60117, Indonesia
| |
Collapse
|
4
|
Xu F, Wang N, Li G, Tian D, Shi X. ANGPTL8/Betatrophin Improves Glucose Tolerance in Older Mice and Metabolomic Analysis Reveals Its Role in Insulin Resistance in HepG2 Cells. Diabetes Metab Syndr Obes 2021; 14:4209-4221. [PMID: 34703256 PMCID: PMC8523517 DOI: 10.2147/dmso.s330700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Insulin resistance is a determining factor in the pathophysiology of type 2 diabetes mellitus (T2DM). Angiopoietin-like protein 8 (ANGPTL8, also known as betatrophin), associated with glucose homeostasis and lipid metabolism, has attracted attention. But its mechanism in glucose metabolism remains unclear. This study aimed to explore the effect of ANGPTL8/betatrophin on glucose tolerance in Kunming (KM) mice of different ages and metabolic profiles in insulin-resistant HepG2 cells. Our study may provide a new perspective of ANGPTL8/betatrophin in insulin resistance from the metabolic changes. METHODS Oral glucose tolerance test was performed in KM mice of different ages. Insulin concentration was measured by using a quantitative enzyme-linked immunosorbent assay (ELISA). ANGPTL8/betatrophin knockouts in HepG2 cells were established with clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) protein 9 (CRISPR/Cas9) system. Cell counting kit-8 (CCK-8) assay was used to determine cell viability after gene knockout. The effect of ANGPTL8/betatrophin on the metabolomic changes was evaluated in high insulin-induced insulin-resistant HepG2 cells by an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method. RESULTS ANGPTL8/betatrophin improved glucose tolerance in older mice not by altering the concentration of insulin. Cell growth was affected in ANGPTL8/betatrophin knockout HepG2. Based on UPLC-MS/MS, compared with wild type insulin-resistant HepG2 cells, we identified 83 differential metabolites in ANGPTL8/betatrophin knockout HepG2 cells after high insulin induction. Among the 14 differential up-regulated metabolites, D-mannose had the highest fold change. In insulin-resistant HepG2 cells, ANGPTL8/betatrophin knockout exerted an effect on the amino acid metabolism, carbohydrate metabolism, metabolism of cofactors and vitamins, lipid metabolism, nucleotide metabolism, and genetic information processing pathway. CONCLUSION This study identified the effect of ANGPTL8/betatrophin on glucose tolerance in mice of different ages and metabolic profiles in insulin-resistant HepG2 cells. These findings may contribute to a new understanding of its role in glucose metabolism in the context of insulin resistance.
Collapse
Affiliation(s)
- Fangfang Xu
- Clinical Medical Research Center, Department of Research and Discipline Development, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, School of Clinical Medicine, Henan University, Zhengzhou, Henan, 450003, People’s Republic of China
- Correspondence: Fangfang Xu Clinical Medical Research Center, Department of Research and Discipline Development, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, School of Clinical Medicine, Henan University, Zhengzhou, Henan, 450003, People’s Republic of ChinaTel +86-371 87160613 Email
| | - Nan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People’s Republic of China
| | - Gangqiang Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People’s Republic of China
| | - Dandan Tian
- Department of Hypertension, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, Henan, 450003, People’s Republic of China
| | - Xiaoyang Shi
- Department of Endocrinology, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, Henan, 450003, People’s Republic of China
| |
Collapse
|
5
|
Zou H, Duan W, Zhang Z, Chen X, Lu P, Yu X. The circulating ANGPTL8 levels show differences among novel subgroups of adult patients with diabetes and are associated with mortality in the subsequent 5 years. Sci Rep 2020; 10:12859. [PMID: 32732946 PMCID: PMC7393150 DOI: 10.1038/s41598-020-69091-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022] Open
Abstract
ANGPTL8, an important regulator of glucose and lipid metabolism, is associated with diabetes, but the role of ANGPTL8 in the outcomes of novel subgroups of diabetes remains unclear. To assess the circulating ANGPTL8 levels in novel subgroups of diabetes and their association with health outcomes, we performed a data-driven cluster analysis (k-means) of patients with newly diagnosed diabetes (741 patients enrolled from 2011 through 2016) from the Risk Evaluation of Cancers in Chinese Diabetic Individuals: a longitudinal (REACTION) study. The primary outcomes were mortality from all causes and cardiovascular diseases (CVD), and the secondary outcome was any cardiovascular event. Comparisons among groups were performed using the Kruskal-Wallis test, and the correlations between variables were assessed using the Pearson correlation test. Logistic regression was used to detect associations between the risk of outcomes and the ANGPTL8 levels. We identified four replicable clusters of patients with diabetes that exhibited significantly different patient characteristics and risks of all-cause mortality. The serum ANGPTL8 levels in the cluster of mild age-related diabetes (MARD), severe insulin-resistant diabetes (SIRD), and severe insulin-deficient diabetes (SIDD) were significantly higher than those in the mild obesity-related diabetes (MOD) cluster (685.01 ± 24.50 vs. 533.5 ± 18.39, p < 0.001; 649.69 ± 55.83 vs. 533.5 ± 18.39, = 0.040; 643.29 ± 30.89 vs. 533.5 ± 18.39, p = 0.001). High circulating ANGPTL8 levels were more highly associated with a greater hazard of all-cause mortality (quartile 4 vs 1: risk ratio [RR] 3.23, 95% CI 1.13-9.22; per unit increase in the Z score: RR 1.53, 95% CI 1.17-2.01) than low circulating ANGPTL8 levels. In conclusion, this 5-year follow-up REACTION study revealed that the circulating ANGPTL8 levels show differences among novel subgroups of adult patients with diabetes and are associated with all-cause mortality in the subsequent 5 years.
Collapse
Affiliation(s)
- Huajie Zou
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Wu Duan
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
- Division of Endocrinology, Department of Internal Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Zeqing Zhang
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Xi Chen
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Puhan Lu
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Xuefeng Yu
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
| |
Collapse
|
6
|
Moderate-Intensity Exercise and Musical Co-Treatment Decreased the Circulating Level of Betatrophin. Int J Endocrinol 2020. [DOI: 10.1155/2020/3098261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Introduction. In general, the significant contribution of lack of physical activity is strongly correlated with lipid metabolism and metabolic disorder. Hitherto, betatrophin is a potential hormone that regulates the lipid profile in the body circulation-associated triglyceride level. This study was designed to evaluate the alteration of betatrophin levels in subject-onset hypertriglyceridemia with exercise intervention co-treated with music. Materials and Methods. A total of 60 nonprofessional athletes were enrolled in this study and given moderate-intensity exercise (MIE) combined with middle rhythm musical co-treatment. The ELISA method was applied to quantify the serum level of betatrophin in all samples. The statistical analysis was performed by applying the Kolmogorov–Smirnov normality test, one-way ANOVA, and parametric linear correlation and regression. Results. Interestingly, our data show that MIE decreased the circulating level of betatrophin combined with music (12.47 ± 0.40 ng/mL) compared with that without musical co-treatment (20.81 ± 1.16 ng/mL) and high-intensity exercise (26.91 ± 2.23 ng/mL). The plasma level of betatrophin was positively correlated with triglycerides (r = 0.316, p≤0.05), systolic blood pressure (r = 0.428, p≤0.01), HDL (r = 0.366, p≤0.05), energy expenditure (r = 0.586, p≤0.001), PGC-1α (r = 0.573, p≤0.001), and irisin (r = 0.863, p≤0.001). By contrast, the plasma level of betatrophin was negatively associated with age (r = −0.298, p≤0.05) and LDL cholesterol (r = −0.372, p≤0.05). Importantly, betatrophin is a significant predictor for energy expenditure (p≤0.001) and plasma triglyceride levels (p≤0.05). Conclusions. Our data demonstrate that betatrophin levels decreased the post-MIE and musical therapeutical combination. Therefore, betatrophin may provide a benefit as the potential biomarker of physiological performance-associated physical training.
Collapse
|