1
|
Chen A, Hu S, Zhu D, Zhao R, Huang C, Gao Y. Lipid droplets proteome reveals dynamic changes of lipid droplets protein during embryonic development of Carya cathayensis nuts. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023:111753. [PMID: 37268111 DOI: 10.1016/j.plantsci.2023.111753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/11/2023] [Accepted: 05/31/2023] [Indexed: 06/04/2023]
Abstract
Lipid droplets (LD) is an important intracellular organelle for triacylglycerols (TAGs) storage. A variety of proteins on the surface of LD coordinately control the contents, size, stability and biogenesis of LD. However, the LD proteins in Chinese hickory (Carya cathayensis) nuts, which rich in oil and composed of unsaturated fatty acids, have not been identified and their roles in LD formation still remain largely unknown. In present study, LD fractions from three developmental stages of Chinese hickory seed were enriched and the LD fraction accumulated proteins were then isolated and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Protein compositions throughout the various developmental phases were calculated using label-free intensity-based absolute quantification (iBAQ) algorithm. The dynamic proportion of high abundance lipid droplets proteins such as oleosins 2 (OLE2), caleosins 1 (CLO1) and steroleosin 5 (HSD5) increased parallelly with the embryo development. For low abundance lipid droplets proteins, SEED LD PROTEIN 2 (SLDP2), STEROL METHYLTRANSFERASE 1 (SMT1) and LD-ASSOCIATED PROTEIN 1 (LDAP1) were the predominant proteins. Moreover, 14 low abundance OB proteins such as oil body-associated protein 2A (OBAP2A) were selected for future investigation that may associate with embryo development. Overall, 62 differentially expressed proteins (DEPs) were determined by label free quantification (LFQ) algorithms and may involve in LD biogenesis. Furthermore, the subcellular localization validation indicated that selected LD proteins were targeted to the lipid droplets, confirming the promising of proteome data. Taken together, this comparative study may shed light on further study to understand the lipid droplets function in the seed, which contains high oil content. DATA AVAILABILITY STATEMENT: The mass spectrometry proteomics data are available in the ProteomeXchange Consortium (accession number: PXD038646).
Collapse
Affiliation(s)
- Anjing Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Shuai Hu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Dongmei Zhu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Rui Zhao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Chunying Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Yanli Gao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
2
|
Hanano A, Blée E, Murphy DJ. Caleosin/peroxygenases: multifunctional proteins in plants. ANNALS OF BOTANY 2023; 131:387-409. [PMID: 36656070 PMCID: PMC10072107 DOI: 10.1093/aob/mcad001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/08/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND Caleosin/peroxygenases (CLO/PXGs) are a family of multifunctional proteins that are ubiquitous in land plants and are also found in some fungi and green algae. CLO/PXGs were initially described as a class of plant lipid-associated proteins with some similarities to the oleosins that stabilize lipid droplets (LDs) in storage tissues, such as seeds. However, we now know that CLO/PXGs have more complex structures, distributions and functions than oleosins. Structurally, CLO/PXGs share conserved domains that confer specific biochemical features, and they have diverse localizations and functions. SCOPE This review surveys the structural properties of CLO/PXGs and their biochemical roles. In addition to their highly conserved structures, CLO/PXGs have peroxygenase activities and are involved in several aspects of oxylipin metabolism in plants. The enzymatic activities and the spatiotemporal expression of CLO/PXGs are described and linked with their wider involvement in plant physiology. Plant CLO/PXGs have many roles in both biotic and abiotic stress responses in plants and in their responses to environmental toxins. Finally, some intriguing developments in the biotechnological uses of CLO/PXGs are addressed. CONCLUSIONS It is now two decades since CLO/PXGs were first recognized as a new class of lipid-associated proteins and only 15 years since their additional enzymatic functions as a new class of peroxygenases were discovered. There are many interesting research questions that remain to be addressed in future physiological studies of plant CLO/PXGs and in their recently discovered roles in the sequestration and, possibly, detoxification of a wide variety of lipidic xenobiotics that can challenge plant welfare.
Collapse
Affiliation(s)
- Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), Damascus, Syria
| | - Elizabeth Blée
- Former Head of Phyto-oxylipins laboratory, Institute of Plant Molecular Biology, University of Strasbourg, France
| | - Denis J Murphy
- School of Applied Sciences, University of South Wales, Treforest, UK
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), Damascus, Syria
| |
Collapse
|
3
|
Liang Y, Yu X, Anaokar S, Shi H, Dahl WB, Cai Y, Luo G, Chai J, Cai Y, Mollá‐Morales A, Altpeter F, Ernst E, Schwender J, Martienssen RA, Shanklin J. Engineering triacylglycerol accumulation in duckweed (Lemna japonica). PLANT BIOTECHNOLOGY JOURNAL 2023; 21:317-330. [PMID: 36209479 PMCID: PMC9884027 DOI: 10.1111/pbi.13943] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/08/2022] [Accepted: 09/30/2022] [Indexed: 05/13/2023]
Abstract
Duckweeds are amongst the fastest growing of higher plants, making them attractive high-biomass targets for biofuel feedstock production. Their fronds have high rates of fatty acid synthesis to meet the demand for new membranes, but triacylglycerols (TAG) only accumulate to very low levels. Here we report on the engineering of Lemna japonica for the synthesis and accumulation of TAG in its fronds. This was achieved by expression of an estradiol-inducible cyan fluorescent protein-Arabidopsis WRINKLED1 fusion protein (CFP-AtWRI1), strong constitutive expression of a mouse diacylglycerol:acyl-CoA acyltransferase2 (MmDGAT), and a sesame oleosin variant (SiOLE(*)). Individual expression of each gene increased TAG accumulation by 1- to 7-fold relative to controls, while expression of pairs of these genes increased TAG by 7- to 45-fold. In uninduced transgenics containing all three genes, TAG accumulation increased by 45-fold to 3.6% of dry weight (DW) without severely impacting growth, and by 108-fold to 8.7% of DW after incubation on medium containing 100 μm estradiol for 4 days. TAG accumulation was accompanied by an increase in total fatty acids of up to three-fold to approximately 15% of DW. Lipid droplets from fronds of all transgenic lines were visible by confocal microscopy of BODIPY-stained fronds. At a conservative 12 tonnes (dry matter) per acre and 10% (DW) TAG, duckweed could produce 350 gallons of oil/acre/year, approximately seven-fold the yield of soybean, and similar to that of oil palm. These findings provide the foundation for optimizing TAG accumulation in duckweed and present a new opportunity for producing biofuels and lipidic bioproducts.
Collapse
Affiliation(s)
- Yuanxue Liang
- Biology DepartmentBrookhaven National LaboratoryUptonNYUSA
| | - Xiao‐Hong Yu
- Biology DepartmentBrookhaven National LaboratoryUptonNYUSA
| | - Sanket Anaokar
- Biology DepartmentBrookhaven National LaboratoryUptonNYUSA
| | - Hai Shi
- Biology DepartmentBrookhaven National LaboratoryUptonNYUSA
| | | | - Yingqi Cai
- Biology DepartmentBrookhaven National LaboratoryUptonNYUSA
| | - Guangbin Luo
- Agronomy Department, Genetics InstituteUniversity of FloridaGainesvilleFLUSA
| | - Jin Chai
- Biology DepartmentBrookhaven National LaboratoryUptonNYUSA
| | - Yuanheng Cai
- Biology DepartmentBrookhaven National LaboratoryUptonNYUSA
| | | | - Fredy Altpeter
- Agronomy Department, Genetics InstituteUniversity of FloridaGainesvilleFLUSA
| | - Evan Ernst
- Cold Spring Harbor LaboratoryCold Spring HarborNYUSA
- Howard Hughes Medical InstituteCold Spring Harbor LaboratoryCold Spring HarborNYUSA
| | - Jorg Schwender
- Biology DepartmentBrookhaven National LaboratoryUptonNYUSA
| | - Robert A. Martienssen
- Cold Spring Harbor LaboratoryCold Spring HarborNYUSA
- Howard Hughes Medical InstituteCold Spring Harbor LaboratoryCold Spring HarborNYUSA
| | - John Shanklin
- Biology DepartmentBrookhaven National LaboratoryUptonNYUSA
| |
Collapse
|
4
|
Li F, Han X, Guan H, Xu MC, Dong YX, Gao XQ. PALD encoding a lipid droplet-associated protein is critical for the accumulation of lipid droplets and pollen longevity in Arabidopsis. THE NEW PHYTOLOGIST 2022; 235:204-219. [PMID: 35348222 DOI: 10.1111/nph.18123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Pollen longevity is critical for plant pollination and hybrid seed production, but few studies have focused on pollen longevity. In this study, we identified an Arabidopsis thaliana gene, Protein associated with lipid droplets (PALD), which is strongly expressed in pollen and critical for the regulation of pollen longevity. PALD was expressed specifically in mature pollen grains and the pollen tube, and its expression was upregulated under dry conditions. PALD encoded a lipid droplet (LD)-associated protein and its N terminus was critical for the LD localization of PALD. The number of LDs and diameter were reduced in pollen grains of the loss-of-function PALD mutants. The viability and germination of the mature pollen grains of the pald mutants were comparable with those of the wild-type, but after the pollen grains were stored under dry conditions, pollen germination and male transmission of the mutant were compromised compared with those of the wild-type. Our study suggests that PALD was required for the maintenance of LD quality in mature pollen grains and regulation of pollen longevity.
Collapse
Affiliation(s)
- Fei Li
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Xiao Han
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Huan Guan
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Mei Chen Xu
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Yu Xiu Dong
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Xin-Qi Gao
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| |
Collapse
|
5
|
Zeng X, Jiang J, Wang F, Liu W, Zhang S, Du J, Yang C. Rice OsClo5, a caleosin protein, negatively regulates cold tolerance through the jasmonate signalling pathway. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:52-61. [PMID: 34694678 DOI: 10.1111/plb.13350] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Caleosin is a lipid droplet-binding protein involved in maintenance of the lipid droplet structure and in signal transduction. However, the role of caleosin proteins in stress resistance is limited. Here, we report data for a rice caleosin protein gene, OsClo5, involved in cold stress tolerance via influence and regulation of the JA signalling pathway. Overexpression lines and RNAi lines of OsClo5 were subjected to cold stress and recovery to measure electrolyte leakage and survival rate. Changes were also detected in the genome-wide transcriptome of OsClo5 overexpressed plants. OsClo5 is located mainly in lipid droplets and expressed in all tissues tested. Its expression was upregulated by various stress conditions when subjected to cold treatment. Overexpression of OsClo5 decreased cold tolerance, and RNAi lines of OsClo5 had higher survival than WT seedlings. OsClo5 inhibited one jasmonate biosynthetic gene and several jasmonate ZIM domain (JAZ) genes, which were upregulated in response to cold stress. OsClo5 is a constitutively expressed caleosin protein that regulates plant cold resistance through inhibition of jasmonate signalling and JA synthesis.
Collapse
Affiliation(s)
- X Zeng
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - J Jiang
- Guangdong Key Lab of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - F Wang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - W Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - S Zhang
- Guangdong Key Lab of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - J Du
- Guangdong Key Lab of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - C Yang
- Guangdong Key Lab of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| |
Collapse
|