1
|
Raposo BL, Souza SO, Santana GS, Lima MTA, Sarmento-Neto JF, Reboucas JS, Pereira G, Santos BS, Cabral Filho PE, Ribeiro MS, Fontes A. A Novel Strategy Based on Zn(II) Porphyrins and Silver Nanoparticles to Photoinactivate Candida albicans. Int J Nanomedicine 2023; 18:3007-3020. [PMID: 37312931 PMCID: PMC10258042 DOI: 10.2147/ijn.s404422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/06/2023] [Indexed: 06/15/2023] Open
Abstract
Background Photodynamic inactivation (PDI) is an attractive alternative to treat Candida albicans infections, especially considering the spread of resistant strains. The combination of the photophysical advantages of Zn(II) porphyrins (ZnPs) and the plasmonic effect of silver nanoparticles (AgNPs) has the potential to further improve PDI. Here, we propose the novel association of polyvinylpyrrolidone (PVP) coated AgNPs with the cationic ZnPs Zn(II) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin or Zn(II) meso-tetrakis(N-n-hexylpyridinium-2-yl)porphyrin to photoinactivate C. albicans. Methods AgNPs stabilized with PVP were chosen to allow for (i) overlap between the NP extinction and absorption spectra of ZnPs and (ii) favor AgNPs-ZnPs interaction; prerequisites for exploring the plasmonic effect. Optical and zeta potential (ζ) characterizations were performed, and reactive oxygen species (ROS) generation was also evaluated. Yeasts were incubated with individual ZnPs or their respective AgNPs-ZnPs systems, at various ZnP concentrations and two proportions of AgNPs, then irradiated with a blue LED. Interactions between yeasts and the systems (ZnP alone or AgNPs-ZnPs) were evaluated by fluorescence microscopy. Results Subtle spectroscopic changes were observed for ZnPs after association with AgNPs, and the ζ analyses confirmed AgNPs-ZnPs interaction. PDI using ZnP-hexyl (0.8 µM) and ZnP-ethyl (5.0 µM) promoted a 3 and 2 log10 reduction of yeasts, respectively. On the other hand, AgNPs-ZnP-hexyl (0.2 µM) and AgNPs-ZnP-ethyl (0.6 µM) systems led to complete fungal eradication under the same PDI parameters and lower porphyrin concentrations. Increased ROS levels and enhanced interaction of yeasts with AgNPs-ZnPs were observed, when compared with ZnPs alone. Conclusion We applied a facile synthesis of AgNPs which boosted ZnP efficiency. We hypothesize that the plasmonic effect combined with the greater interaction between cells and AgNPs-ZnPs systems resulted in an efficient and improved fungal inactivation. This study provides insight into the application of AgNPs in PDI and helps diversify our antifungal arsenal, encouraging further developments toward inactivation of resistant Candida spp.
Collapse
Affiliation(s)
- Bruno L Raposo
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Sueden O Souza
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Gleyciane S Santana
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Max T A Lima
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - José F Sarmento-Neto
- Departamento de Química, Universidade Federal da Paraíba, João Pessoa, PB, Brazil
| | - Júlio S Reboucas
- Departamento de Química, Universidade Federal da Paraíba, João Pessoa, PB, Brazil
| | - Goreti Pereira
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, PE, Brazil
- Departamento de Química & CESAM, Universidade de Aveiro, Aveiro, Portugal
| | - Beate S Santos
- Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Paulo E Cabral Filho
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Martha S Ribeiro
- Centro de Lasers e Aplicações, Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN/SP), São Paulo, SP, Brazil
| | - Adriana Fontes
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, PE, Brazil
| |
Collapse
|
2
|
|
3
|
Bhardwaj P, Kamil M, Panda M. Salt Effect on the Solution Properties of Cationic Gemini/Conventional Surfactants in the Presence of the Nonionic Polymer Hydroxypropylmethyl Cellulose. J SURFACTANTS DETERG 2019. [DOI: 10.1002/jsde.12302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Prashant Bhardwaj
- Department of Petroleum StudiesAligarh Muslim University Aligarh 202002 India
| | - Mohammad Kamil
- Department of Petroleum StudiesAligarh Muslim University Aligarh 202002 India
| | - Manorama Panda
- Department of Petroleum StudiesAligarh Muslim University Aligarh 202002 India
| |
Collapse
|
4
|
Bujak T, Wasilewski T, Nizioł-Łukaszewska Z. Effect of molecular weight of polyvinylpyrrolidone on the skin irritation potential and properties of body wash cosmetics in the coacervate form. PURE APPL CHEM 2019. [DOI: 10.1515/pac-2018-0703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Body wash cosmetics are among the most common groups of cosmetics used by consumers. Faced with strong competition in the marketplace, cosmetic manufacturers search for innovative solutions both in terms of product composition and form. An example of an innovative technology which can be used in the production of body wash cosmetics is the process of coacervation which yields a concentrated body wash product. Another important aspect which needs to be considered in the formulation of body wash cosmetics is their safety of use. It is crucial to ensure that such cosmetic products do not induce skin irritations. At present, the most widespread method of reducing the skin irritation potential of cosmetic products is the use of surfactant mixtures. The study is an attempt to evaluate the effect of using polyvinylpyrrolidone in the formulations of model body wash cosmetics in the coacervate form on the skin irritation potential and basic quality determinants of body wash products. Polyvinylpyrrolidone was found to contribute to a significant reduction in the irritant effect, and the skin irritation potential decreased in proportion to increasing molecular mass of the polymer. The application of polyvinylpyrrolidone with the different molecular weight also has an impact on improving the foaming properties of model body wash cosmetics and the stability of foam they produce.
Collapse
Affiliation(s)
- Tomasz Bujak
- Department of Technology of Cosmetic and Pharmaceutical Products , University of Information Technology and Management in Rzeszow , Sucharskiego 2 , Rzeszow 35-225 , Poland
| | - Tomasz Wasilewski
- Department of Chemistry , University of Technology and Humanities in Radom , Chrobrego 27 , Radom 26-600 , Poland
| | - Zofia Nizioł-Łukaszewska
- Department of Technology of Cosmetic and Pharmaceutical Products , University of Information Technology and Management in Rzeszow , Sucharskiego 2 , Rzeszow 35-225 , Poland
| |
Collapse
|
5
|
Machale J, Majumder SK, Ghosh P, Sen TK. Role of chemical additives and their rheological properties in enhanced oil recovery. REV CHEM ENG 2019. [DOI: 10.1515/revce-2018-0033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
A significant amount of oil (i.e. 60–70%) remains trapped in reservoirs after the conventional primary and secondary methods of oil recovery. Enhanced oil recovery (EOR) methods are therefore necessary to recover the major fraction of unrecovered trapped oil from reservoirs to meet the present-day energy demands. The chemical EOR method is one of the promising methods where various chemical additives, such as alkalis, surfactants, polymer, and the combination of all alkali–surfactant–polymer (ASP) or surfactant–polymer (SP) solutions, are injected into the reservoir to improve the displacement and sweep efficiency. Every oil field has different conditions, which imposes new challenges toward alternative but more effective EOR techniques. Among such attractive alternative additives are polymeric surfactants, natural surfactants, nanoparticles, and self-assembled polymer systems for EOR. In this paper, water-soluble chemical additives such as alkalis, surfactants, polymer, and ASP or SP solution for chemical EOR are highlighted. This review also discusses the concepts and techniques related to the chemical methods of EOR, and highlights the rheological properties of the chemicals involved in the efficiency of EOR methods.
Collapse
Affiliation(s)
- Jinesh Machale
- Department of Chemical Engineering , Indian Institute of Technology Guwahati , Guwahati 781039, Assam , India
| | - Subrata Kumar Majumder
- Department of Chemical Engineering , Indian Institute of Technology Guwahati , Guwahati 781039, Assam , India
| | - Pallab Ghosh
- Department of Chemical Engineering , Indian Institute of Technology Guwahati , Guwahati 781039, Assam , India
| | - Tushar Kanti Sen
- Department of Chemical Engineering , Curtin University , GPO Box U1987 , Perth, WA 6845 , Australia
| |
Collapse
|
6
|
Russo Krauss I, Imperatore R, De Santis A, Luchini A, Paduano L, D'Errico G. Structure and dynamics of cetyltrimethylammonium chloride-sodium dodecylsulfate (CTAC-SDS) catanionic vesicles: High-value nano-vehicles from low-cost surfactants. J Colloid Interface Sci 2017; 501:112-122. [PMID: 28437699 DOI: 10.1016/j.jcis.2017.04.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 12/11/2022]
Abstract
HYPOTHESIS Catanionic vesicles based on large-scale produced surfactants represent a promising platform for the design of innovative, effective and relatively inexpensive nano-vehicles for a variety of actives. Structural, dynamic and functional behavior of these aggregates is finely tuned by the molecular features of their components and can be opportunely tailored for their applications as drug carriers. EXPERIMENTS Here we investigate the aggregates formed by CTAC and SDS, two of the most diffused surfactants, by means of Dynamic Light Scattering, Small Angle Neutron Scattering and Electron Paramagnetic Resonance spectroscopy (EPR). The exploitation of these aggregates as nano-vehicles is explored using the poorly water-soluble antioxidant trans-resveratrol (t-RESV), testing t-RESV solubility and antioxidant activity by means of UV, fluorescence spectroscopy and EPR. FINDINGS The presence of a large stability region of catanionic vesicles on the CTAC-rich side of the phase diagram is highlighted and interpreted in terms of the mismatch between the lengths of the surfactant tails and of first reported effects of the chloride counterions. CTAC-SDS vesicles massively solubilize t-RESV, which in catanionic vesicles exerts a potent antioxidant and radical-scavenging activity. This behavior arises from the positioning of the active at the surface of the vesicular aggregates thus being sufficiently exposed to the external medium.
Collapse
Affiliation(s)
- Irene Russo Krauss
- Department of Chemical Sciences, University of Naples ''Federico II'', Complesso di Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy; CSGI (Consorzio per lo Sviluppo dei Sistemi a Grande Interfase), via della Lastruccia 3, I-50019 Florence, Italy
| | - Riccardo Imperatore
- Department of Chemical Sciences, University of Naples ''Federico II'', Complesso di Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy; CSGI (Consorzio per lo Sviluppo dei Sistemi a Grande Interfase), via della Lastruccia 3, I-50019 Florence, Italy
| | - Augusta De Santis
- Department of Chemical Sciences, University of Naples ''Federico II'', Complesso di Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy; CSGI (Consorzio per lo Sviluppo dei Sistemi a Grande Interfase), via della Lastruccia 3, I-50019 Florence, Italy
| | - Alessandra Luchini
- Department of Chemical Sciences, University of Naples ''Federico II'', Complesso di Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy; CSGI (Consorzio per lo Sviluppo dei Sistemi a Grande Interfase), via della Lastruccia 3, I-50019 Florence, Italy; Institut Laue-Langevin, BP 156, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Luigi Paduano
- Department of Chemical Sciences, University of Naples ''Federico II'', Complesso di Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy; CSGI (Consorzio per lo Sviluppo dei Sistemi a Grande Interfase), via della Lastruccia 3, I-50019 Florence, Italy
| | - Gerardino D'Errico
- Department of Chemical Sciences, University of Naples ''Federico II'', Complesso di Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy; CSGI (Consorzio per lo Sviluppo dei Sistemi a Grande Interfase), via della Lastruccia 3, I-50019 Florence, Italy.
| |
Collapse
|
7
|
Bujak T, Wasilewski T, Nizioł-Łukaszewska Z. Role of macromolecules in the safety of use of body wash cosmetics. Colloids Surf B Biointerfaces 2015; 135:497-503. [PMID: 26291586 DOI: 10.1016/j.colsurfb.2015.07.051] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 07/17/2015] [Accepted: 07/20/2015] [Indexed: 10/23/2022]
Abstract
One of the most challenging problems related to the use of surfactants in body wash cosmetics is their potential to cause skin irritations. Surfactants can bind with proteins, remove lipids from the epidermal surface, contribute to the disorganization of liquid crystal structures in the intercellular lipids, and interact with living skin cells. These processes can lead to skin irritations and allergic reactions, and impair the epidermal barrier function. The present study is an attempt to assess the effect of polymers and hydrolysed proteins present in the formulations of model body wash cosmetics on product properties. Special attention was given to the safety of use of this product type. The study examined three macromolecules: polyvinylpyrrolidone (PVP), hydrolysed wheat protein (HWP) and polyvinylpyrrolidone/hydrolysed wheat protein crosspolymer (PVP/HWP). The addition of the substances under study was found to improve the foaming properties of body wash cosmetics, increase their stability during storage, and contribute significantly to an improvement in the safety of product use by reducing the irritant potential. The strongest ability to reduce the skin irritation potential was determined for the formula enriched with the PVP/HWP crosspolymer.
Collapse
Affiliation(s)
- Tomasz Bujak
- Department of Cosmetology, University of Information Technology and Management in Rzeszow, Sucharskiego 2, Rzeszow 35-225, Poland.
| | - Tomasz Wasilewski
- Department of Chemistry, University of Technology and Humanities in Radom, Chrobrego 27, Radom 26-600, Poland
| | - Zofia Nizioł-Łukaszewska
- Department of Cosmetology, University of Information Technology and Management in Rzeszow, Sucharskiego 2, Rzeszow 35-225, Poland
| |
Collapse
|
8
|
Thermodynamic investigation of the systems poly(ethylene glycol)+sodium pentane-1-sulfonate+water and poly(vinyl pyrrolidone)+sodium pentane-1-sulfonate+water. J Colloid Interface Sci 2010; 346:107-17. [DOI: 10.1016/j.jcis.2010.02.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 02/11/2010] [Accepted: 02/13/2010] [Indexed: 11/24/2022]
|
9
|
Wanawongthai C, Pongpeerapat A, Higashi K, Tozuka Y, Moribe K, Yamamoto K. Nanoparticle formation from probucol/PVP/sodium alkyl sulfate co-ground mixture. Int J Pharm 2009; 376:169-75. [DOI: 10.1016/j.ijpharm.2009.04.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 04/21/2009] [Accepted: 04/22/2009] [Indexed: 10/20/2022]
|
10
|
Bonnet P, Buisson JP, Martyr NN, Bizot H, Buelon A, Chauvet O. Photophysical comparative study of amylose and polyvinyle pyrrolidone/single walled carbon nanotubes complex. Phys Chem Chem Phys 2009; 11:8626-31. [DOI: 10.1039/b907948c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Khan MY, Samanta A, Ojha K, Mandal A. Interaction between aqueous solutions of polymer and surfactant and its effect on physicochemical properties. ASIA-PAC J CHEM ENG 2008. [DOI: 10.1002/apj.212] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Tzeng JK, Hou SS. Interactions between Poly(N-vinylformamide) and Sodium Dodecyl Sulfate As Studied by Fluorescence and Two-Dimensional NOE NMR Spectroscopy. Macromolecules 2008. [DOI: 10.1021/ma702296h] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jung-Kai Tzeng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Sheng-Shu Hou
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
13
|
D'Errico G, Ciccarelli D, Ortona O, Paduano L, Sartorio R. Interaction between pentaethylene glycol n-octyl ether and poly(acrylic acid): Effect of the polymer molecular weight. J Colloid Interface Sci 2007; 314:242-50. [PMID: 17561063 DOI: 10.1016/j.jcis.2007.05.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Accepted: 05/11/2007] [Indexed: 11/25/2022]
Abstract
The effect of the polymer molecular weight on the interaction between pentaethylene glycol n-octyl ether (C(8)E(5)) and poly(acrylic acid) (PAA) has been investigated by a combined experimental strategy including tensiometry, potentiometry, calorimetry, fluorescence quenching and intradiffusion (pulsed gradient spin echo-NMR) measurements. PAA samples with an average molecular weight varying in a wide range (M (w)=2000, 100,000, 250,000, and 450,000) have been considered. The measurements have been performed at constant polymer concentration (0.1% w/w) with varying surfactant molality. In all the considered systems, at low surfactant concentration, adsorption of surfactant monomers onto the polymer chain has been detected. At a C(8)E(5) molality (T(1)) independent of the PAA M (w), surfactant molecules start to aggregate, forming clusters to which the polymer co-participates. Above this concentration, the behavior of the system depends on M (w). In fact, if polymer samples with high molecular weight (M (w)100,000) are employed, all the added surfactant aggregates onto the polymer leading to the polymer saturation and, subsequently, to free micelles formation. Both saturation and free micellization occur at surfactant concentrations which are independent of the polymer molecular weight. C(8)E(5) aqueous mixtures containing PAA with low molecular weight (M (w)=2000) behaves differently, in that, above T(1), only a fraction ( approximately 20%) of the added surfactant molecules interact with the polymer, forming aggregates to which more than one PAA chain participate. In this case, C(8)E(5) free micellization occurs before polymer saturation. The experimental evidences have been interpreted in terms of the subtle balance between the various molecular interactions driving the surfactant-polymer aggregation.
Collapse
Affiliation(s)
- Gerardino D'Errico
- Chemistry Department of Naples University "Federico II," Via Cintia, Complesso di Montesantangelo, I-80126 Napoli, Italy.
| | | | | | | | | |
Collapse
|