1
|
Singh G, Gupta S, Priyanka, Puspa, Rani B, Kaur H, Vikas, Yadav R, Sehgal R. Designing of bis-organosilanes as dual chemosensor for Sn(II) and Al(III) ions: Antibacterial activity and in silico molecular docking study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123435. [PMID: 37788514 DOI: 10.1016/j.saa.2023.123435] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/10/2023] [Accepted: 09/18/2023] [Indexed: 10/05/2023]
Abstract
Here, in this article, we present the design and synthesis of 1,2,3-triazole allied Schiff base functionalized organosilanes 6(a-e) utilising single step approach. These compounds were further characterised using NMR (1H, 13C) and mass spectrometry. Furthermore, UV-Visible and fluorescence spectroscopy showed that compound 6a had a high selectivityto Sn(II) and Al(III) metal ions compared to other relevant metal ions with lowlimit of detection (LOD) values. Suppression of -C=N isomerization, constrained intramolecular charge transfer (ICT), and complexation with Sn(II)/Al(III) ions (Chelation Enhanced Fluorescence (CHEF)) results in probe 6a's enhanced turn on fluorescence toward the detection of Sn(II) and Al(III) ions. Probe 6a was a strong candidate for the detection of Sn(II) and Al(III) ions due to its selectivity, reversibility, and competitiveness. Since the detecting phenomenon can be reversed, the sensor 6a perfectly mimics the INHIBIT molecular logic gate. Also, computational study utilising DFT technique was used to shed light on the complexation mode of 6a with Sn(II) and Al(III) metal ions. The compound 6a's antibacterial activity has also been successfully tested against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. Additionally, the compound 6a was docked to the E. coli and S. aureus proteins, which exhibited excellent results with binding energies of -7.18 Kcal mol-1 and -7.05 Kcal mol-1, respectively. As both in-vitro and docking studies demonstrated anti-bacterial activity of the probe 6a, it may be anticipated that the probe has potential to serve as anti-bacterial drug in nearly future.
Collapse
Affiliation(s)
- Gurjaspreet Singh
- Department of Chemistry, Panjab University, Chandigarh 160014, India.
| | - Sofia Gupta
- Department of Chemistry, Panjab University, Chandigarh 160014, India.
| | - Priyanka
- Department of Humanities and Applied Sciences, Echelon Institute of Technology Faridabad, 121101 Haryana, India
| | - Puspa
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Bhavana Rani
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Harshbir Kaur
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Vikas
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Richa Yadav
- Department of Medicinal Parasitology, PGIMER, Chandigarh 160014, India
| | - Rakesh Sehgal
- Department of Medicinal Parasitology, PGIMER, Chandigarh 160014, India.
| |
Collapse
|
2
|
Vanillin allied 1,2,3- triazole as a selective sensor for detection of Al3+ ions: A potent inhibitor against Entamoeba histolytica. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
3
|
Ratiometric Fluorescent Sensor Based on Tb(III) Functionalized Metal-Organic Framework for Formic Acid. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248702. [PMID: 36557836 PMCID: PMC9781586 DOI: 10.3390/molecules27248702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022]
Abstract
Formic acid is a common chemical raw material, the effective detection of which is of importance to food safety and environmental quality. In this work, the lanthanide functionalized dual-emission metal-organic framework (TH25) was prepared as a ratiometric fluorescent sensor for formic acid. This ratiometric sensor has a good detection performance with high selectivity, sensitivity, and reproducibility. Together with a low limit of detection of 2.1 ppm, these characters promise the ability to sense at low levels as well as a practical detection ability. This work provides ideas for the design and synthesis of effective chemical sensors for organic acids.
Collapse
|
4
|
Alyaninezhad Z, Bekhradnia A, Gorji RZ, Arshadi S, ahmadi S, Gorji MZ. Mercury (II) Complex Based on Quinoxaline– Aminoantipyrine: Synthesis, Crystal structure, Computational studies and Anticancer activities evaluation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Soliman MH, El-Sakka SS, Fathy AS, Kamel RM. Synthesis, Characterization and Photophysical Properties of New 2(3H) Furanone Derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
Synthesis, characterization and biological activity of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes derived from Schiff base ligand quinoxaline-2-carboxaldehyde and 4-aminoantipyrine. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Hoque A, Islam MS, Khan MMA, Ghosh S, Sekh MA, Hussain S, Alam MA. Biphenyl Containing Amido Schiff base Derivative as a Turn-on Fluorescent Chemosensor for Al3+ and Zn2+ ions. NEW J CHEM 2022. [DOI: 10.1039/d2nj03144b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A hydrazine derived Bis(2-hydroxybenzylidene)-[1,1'-biphenyl]-2,2'-dicarbohydrazide (sensor 1) has been synthesized and its sensing properties towards metal ions has been demonstrated using simple UV-visble spectroscopic, fluorometric technique and visible colour change. The...
Collapse
|
8
|
Singh G, Devi A, Mohit, Diksha, Suman, Saini A, Kaur JD, Gupta S, Vikas. Synthesis, “turn-on” fluorescence signals towards Zn 2+ and Hg 2+ and monoamine oxidase A inhibitory activity using a molecular docking approach of morpholine analogue Schiff base linked organosilanes. NEW J CHEM 2022. [DOI: 10.1039/d2nj03767j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A new set of morpholine analogue Schiff base linked organosilanes (5a–5c) was prepared.
Collapse
Affiliation(s)
- Gurjaspreet Singh
- Department of Chemistry & Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Anita Devi
- Department of Chemistry & Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Mohit
- Department of Chemistry & Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Diksha
- Department of Chemistry & Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Suman
- Department of Chemistry & Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Anamika Saini
- Department of Chemistry & Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Jashan Deep Kaur
- Department of Chemistry & Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Sofia Gupta
- Department of Chemistry & Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Vikas
- Department of Chemistry & Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
9
|
Immanuel David C, Prabakaran G, Nandhakumar R. Recent approaches of 2HN derived fluorophores on recognition of Al3+ ions: A review for future outlook. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Aldulmani SA. Spectral, modeling, dna binding/cleavage and biological activity studies on the newly synthesized 4-[(Furan-2-ylmethylene)amino]-3-[(2‑hydroxy‑benzylidene)amino]-phenyl}-phenyl-methanone and some bivalent metal(II) chelates. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Mallikarjuna Reddy G, Camilo A, Raul Garcia J. Pyrrole-2,5-dione analogs as a promising antioxidant agents: microwave-assisted synthesis, bio-evaluation, SAR analysis and DFT studies/interpretation. Bioorg Chem 2020; 106:104465. [PMID: 33229119 DOI: 10.1016/j.bioorg.2020.104465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 01/11/2023]
Abstract
A new series of pyrrole analogs were developed via the microwave irradiation synthesis. Consequently, got a high yield of the products. As pyrroles are familiar for showing various biological properties, all obtained compounds were screened for their antioxidant properties, most of the compounds showing significant activity. In fact, the motifs 5e, 5g, 5h and 5m showed outstanding antioxidant properties. Further, to enlighten the biologically energetic behavior underlying the antioxidant activity, compounds DFT studies were performed. Noteworthy results have been attained and the structure activity relationship (SAR) was discussed with the support of this results. It was found that highly biological active compounds exhibited a low HOMO-LUMO energy gap (Eg) and the high Eg value compounds show very low/negligible or inactive antioxidant activities. In other cases, compounds containing high HOMO energy levels also provide high antioxidant activity. The thought-provoking point of our results is that theoretical descriptors of the HOMO-LUMO energy gap and the highest occupied molecular orbital energy are important descriptors in the bioorganic research to support the biological experiments.
Collapse
Affiliation(s)
- Guda Mallikarjuna Reddy
- Ural Federal University, Chemical Engineering Institute, Yekaterinburg 620002, Russian Federation
| | - Alexandre Camilo
- Department of Physics, State University of Ponta Grossa, Ponta Grossa, Parana 84030-900, Brazil
| | - Jarem Raul Garcia
- Department of Chemistry, State University of Ponta Grossa, Ponta Grossa, Parana 84030-900, Brazil.
| |
Collapse
|
12
|
Abebe F, Gonzalez J, Makins-Dennis K, Shaw R. A New bis(rhodamine)-Based Colorimetric Chemosensor for Cu 2. INORG CHEM COMMUN 2020; 120:108154. [PMID: 32863739 PMCID: PMC7451251 DOI: 10.1016/j.inoche.2020.108154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A novel sensor (RD) bearing rhodamine B and 4-tert-Butyl phenol unit have been designed and synthesized using microwave irradiation. The sensor allows selective detection of Cu2+ by forming absorptive complex and trigger the formation of highly colored ring-open spirolactam. The recognition ability of the sensor was investigated by absorbance, Job's plot, infrared (IR) and time dependent-density functional theory (TD-DFT) calculations.
Collapse
Affiliation(s)
- Fasil Abebe
- Department of Chemistry, Morgan State University, Baltimore, MD, 21251
| | - Jazmin Gonzalez
- Department of Chemistry, Morgan State University, Baltimore, MD, 21251
| | | | - Roosevelt Shaw
- Department of Chemistry, Morgan State University, Baltimore, MD, 21251
| |
Collapse
|
13
|
Consty ZA, Zhang Y, Xu Y. A simple sensor based on imidazo[2,1-b]thiazole for recognition and differentiation of Al3+, F− and PPi. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112578] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Quan C, Liu J, Sun W, Cheng X. Highly sensitive and selective fluorescence chemosensors containing phenanthroline moieties for detection of Zn2+ and Cd2+ ions. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00893-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Xu Y, Wang H, Zhao J, Yang X, Pei M, Zhang G, Zhang Y. A dual functional fluorescent sensor for the detection of Al3+ and Zn2+ in different solvents. NEW J CHEM 2019. [DOI: 10.1039/c9nj03298c] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new fluorescent sensor, X, was designed and synthesized based on imidazo[2,1-b]thiazole and 2-hydroxy-1-naphthaldehyde, which could be used to detect Al3+ in methanol buffer solution and detect Zn2+ in ethanol buffer solution, respectively.
Collapse
Affiliation(s)
- Yuankang Xu
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Hanyu Wang
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | | | - Xiaofeng Yang
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Meishan Pei
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Guangyou Zhang
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Yanxia Zhang
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| |
Collapse
|