1
|
Pitsalidis C, Pappa AM, Boys AJ, Fu Y, Moysidou CM, van Niekerk D, Saez J, Savva A, Iandolo D, Owens RM. Organic Bioelectronics for In Vitro Systems. Chem Rev 2021; 122:4700-4790. [PMID: 34910876 DOI: 10.1021/acs.chemrev.1c00539] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bioelectronics have made strides in improving clinical diagnostics and precision medicine. The potential of bioelectronics for bidirectional interfacing with biology through continuous, label-free monitoring on one side and precise control of biological activity on the other has extended their application scope to in vitro systems. The advent of microfluidics and the considerable advances in reliability and complexity of in vitro models promise to eventually significantly reduce or replace animal studies, currently the gold standard in drug discovery and toxicology testing. Bioelectronics are anticipated to play a major role in this transition offering a much needed technology to push forward the drug discovery paradigm. Organic electronic materials, notably conjugated polymers, having demonstrated technological maturity in fields such as solar cells and light emitting diodes given their outstanding characteristics and versatility in processing, are the obvious route forward for bioelectronics due to their biomimetic nature, among other merits. This review highlights the advances in conjugated polymers for interfacing with biological tissue in vitro, aiming ultimately to develop next generation in vitro systems. We showcase in vitro interfacing across multiple length scales, involving biological models of varying complexity, from cell components to complex 3D cell cultures. The state of the art, the possibilities, and the challenges of conjugated polymers toward clinical translation of in vitro systems are also discussed throughout.
Collapse
Affiliation(s)
- Charalampos Pitsalidis
- Department of Physics, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi 127788, UAE.,Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Anna-Maria Pappa
- Department of Biomedical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi 127788, UAE
| | - Alexander J Boys
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Ying Fu
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.,Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow G1 1RD, U.K
| | - Chrysanthi-Maria Moysidou
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Douglas van Niekerk
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Janire Saez
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.,Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Avenida Miguel de Unamuno, 3, 01006 Vitoria-Gasteiz, Spain.,Ikerbasque, Basque Foundation for Science, E-48011 Bilbao, Spain
| | - Achilleas Savva
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Donata Iandolo
- INSERM, U1059 Sainbiose, Université Jean Monnet, Mines Saint-Étienne, Université de Lyon, 42023 Saint-Étienne, France
| | - Róisín M Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| |
Collapse
|
2
|
Biscay J, Findlay E, Dennany L. Electrochemical monitoring of alcohol in sweat. Talanta 2020; 224:121815. [PMID: 33379040 DOI: 10.1016/j.talanta.2020.121815] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 10/23/2022]
Abstract
Rapid, periodic monitoring and detection of ethanol (EtOH) after consumption via a non-invasive measurement has been an area of increased research in recent years. Current point-of-care or on-site detection strategies rely on single use sensors which are inadequate for monitoring during a longer period. A low cost, portable and novel approach is developed here for real-time monitoring over several days utilising electrochemical techniques. The sensor shows oxidation of the ethanol in phosphate buffer and artificial sweat using the amperometric response from the application of +0.9 V to the polyaniline modified screen printed electrode using 1 mM EtOH as the averaged amount of EtOH eliminated in sweat after the consumption of one alcoholic beverage. Our enzyme based electrochemical sensor exhibits a qualitative assessment of the presence of EtOH in small volumes (≤40 μL) of 0.1 M sodium bicarbonate and subsequently artificial sweat, with 50 measurements taken daily over 11 days. While quantitative information is not obtained, the sensor system exhibits excellent stability after 3 months' dried storage in this complex biological matrix in an oxygen free cabinet. This addresses one of the key challenges for enzyme based electrochemical sensors, namely, the ability for real-time monitoring in complex biological matrices. The qualitative response illustrates the potential for this sensor to be exploited by non-experts which suggests the promise for their wider application in next-generation wearable electronics necessary for alcohol monitoring.
Collapse
Affiliation(s)
- Julien Biscay
- WestChem, Department of Pure and Applied Chemistry, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow, G1 1RD, UK; Stirling University Innovation Park, Buddi Ltd, Unit 14, Scion House, Stirling, FK9 4NF, UK
| | - Ewan Findlay
- Stirling University Innovation Park, Buddi Ltd, Unit 14, Scion House, Stirling, FK9 4NF, UK
| | - Lynn Dennany
- WestChem, Department of Pure and Applied Chemistry, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow, G1 1RD, UK.
| |
Collapse
|
3
|
El-Naggar NEA, El-Shweihy NM. Identification of cholesterol-assimilating actinomycetes strain and application of statistical modeling approaches for improvement of cholesterol oxidase production by Streptomyces anulatus strain NEAE-94. BMC Microbiol 2020; 20:86. [PMID: 32276593 PMCID: PMC7149892 DOI: 10.1186/s12866-020-01775-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/30/2020] [Indexed: 03/20/2023] Open
Abstract
Background Cholesterol oxidase biosensors have been used to determine the level of cholesterol in different serum and food samples. Due to a wide range of industrial and clinical applications of microbial cholesterol oxidase, isolation and identification of a new microbial source (s) of cholesterol oxidase are very important. Results The local isolate Streptomyces sp. strain NEAE-94 is a promising source of cholesterol oxidase. It was identified based on cultural, morphological and physiological characteristics; in addition to the 16S rRNA sequence. The sequencing product had been deposited in the GenBank database under the accession number KC354803. Cholesterol oxidase production by Streptomyces anulatus strain NEAE-94 in shake flasks was optimized using surface response methodology. The different process parameters were first screened using a Plackett-Burman design and the parameters with significant effects on the production of cholesterol oxidase were identified. Out of the 15 factors screened, agitation speed, cholesterol and yeast extract concentrations had the most significant positive effects on the production of cholesterol oxidase. The optimal levels of these variables and the effects of their mutual interactions on cholesterol oxidase production were determined using Box-Behnken design. Cholesterol oxidase production by Streptomyces anulatus strain NEAE-94 was 11.03, 27.31 U/mL after Plackett-Burman Design and Box-Behnken design; respectively, with a fold of increase of 6.06 times compared to the production before applying the Plackett-Burman design (4.51 U/mL). Conclusions Maximum cholesterol oxidase activity was obtained at the following fermentation conditions: g/L (cholesterol 4, yeast extract 5, NaCl 0.5, K2HPO4 1, FeSO4.7H2O 0.01, MgSO4.7H2O 0.5), pH 7, inoculum size 4% (v/v), temperature 37°C, agitation speed of 150 rpm, medium volume 50 mL and incubation time 5 days.
Collapse
Affiliation(s)
- Noura El-Ahmady El-Naggar
- Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technological Applications, (SRTA-City), Alexandria, Egypt.
| | - Nancy M El-Shweihy
- Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technological Applications, (SRTA-City), Alexandria, Egypt
| |
Collapse
|
4
|
Shoaie N, Daneshpour M, Azimzadeh M, Mahshid S, Khoshfetrat SM, Jahanpeyma F, Gholaminejad A, Omidfar K, Foruzandeh M. Electrochemical sensors and biosensors based on the use of polyaniline and its nanocomposites: a review on recent advances. Mikrochim Acta 2019; 186:465. [PMID: 31236681 DOI: 10.1007/s00604-019-3588-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/06/2019] [Indexed: 12/12/2022]
Abstract
Polyaniline and its composites with nanoparticles have been widely used in electrochemical sensor and biosensors due to their attractive properties and the option of tuning them by proper choice of materials. The review (with 191 references) describes the progress made in the recent years in polyaniline-based biosensors and their applications in clinical sensing, food quality control, and environmental monitoring. A first section summarizes the features of using polyaniline in biosensing systems. A subsequent section covers sensors for clinical applications (with subsections on the detection of cancer cells and bacteria, and sensing of glucose, uric acid, and cholesterol). Further sections discuss sensors for use in the food industry (such as for sulfite, phenolic compounds, acrylamide), and in environmental monitoring (mainly pesticides and heavy metal ions). A concluding section summarizes the current state, highlights some of the challenges currently compromising performance in biosensors and nanobiosensors, and discusses potential future directions. Graphical abstract Schematic presentation of electrochemical sensor and biosensors applications based on polyaniline/nanoparticles in various fields of human life including medicine, food industry, and environmental monitoring. The simultaneous use of suitable properties polyaniline and nanoparticles can provide the fabrication of sensing systems with high sensitivity, short response time, high signal/noise ratio, low detection limit, and wide linear range by improving conductivity and the large surface area for biomolecules immobilization.
Collapse
Affiliation(s)
- Nahid Shoaie
- Department of Biotechnology, Tarbiat Modares University of Medical Science, P.O. Box 14115-111, Tehran, Iran
| | - Maryam Daneshpour
- Biotechnology Department, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, P.O. Box: 1985717443, Iran
| | - Mostafa Azimzadeh
- Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, PO Box: 89195-999, Yazd, Iran.,Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, P.O. Box: 89195-999, Iran.,Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sara Mahshid
- Department of Bioengineering, McGill University, Montreal, Quebec, P.O. Box: H3A 0E9, Canada
| | - Seyyed Mehdi Khoshfetrat
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Science, Tehran, P.O. Box:1411713137, Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Jahanpeyma
- Department of Biotechnology, Tarbiat Modares University of Medical Science, P.O. Box 14115-111, Tehran, Iran
| | - Alieh Gholaminejad
- Department of Biotechnology, Tarbiat Modares University of Medical Science, P.O. Box 14115-111, Tehran, Iran
| | - Kobra Omidfar
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Science, Tehran, P.O. Box:1411713137, Iran. .,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mehdi Foruzandeh
- Department of Biotechnology, Tarbiat Modares University of Medical Science, P.O. Box 14115-111, Tehran, Iran.
| |
Collapse
|
5
|
Cevik E, Buyukharman M, Yildiz HB. Construction of efficient bioelectrochemical devices: Improved electricity production from cyanobacteria (Leptolyngbia
sp.) based on π-conjugated conducting polymer/gold nanoparticle composite interfaces. Biotechnol Bioeng 2019; 116:757-768. [DOI: 10.1002/bit.26885] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/21/2018] [Accepted: 11/29/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Emre Cevik
- Genetic Research Department; Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University; Dammam Saudi Arabia
| | - Mustafa Buyukharman
- Department of Metallurgical and Materials Engineering; KTO Karatay University; Konya Turkey
| | - Huseyin Bekir Yildiz
- Department of Metallurgical and Materials Engineering; KTO Karatay University; Konya Turkey
- Biotechnology Research Lab, FELSIM Ltd. Inc., Konya Technocity; Konya Turkey
| |
Collapse
|
6
|
Cevik E, Cerit A, Tombuloglu H, Sabit H, Yildiz HB. Electrochemical Glucose Biosensors: Whole Cell Microbial and Enzymatic Determination Based on 10-(4H-Dithieno[3,2-b:2′,3′-d]Pyrrol-4-yl)Decan-1-Amine Interfaced Glassy Carbon Electrodes. ANAL LETT 2018. [DOI: 10.1080/00032719.2018.1521828] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Emre Cevik
- Genetic Research Department, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Alaaddin Cerit
- Eregli Kemal Akman Vocational School, Konya Necmettin Erbakan University, Konya, Turkey
| | - Huseyin Tombuloglu
- Genetic Research Department, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Hussein Sabit
- Genetic Research Department, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Huseyin Bekir Yildiz
- Department of Metallurgical and Materials Engineering, KTO Karatay University, Konya, Turkey
- Biotechnology Research Lab, FELSIM Ltd Inc., Konya Technocity, Konya, Turkey
| |
Collapse
|
7
|
Cevik E, Cerit A, Gazel N, Yildiz HB. Construction of an Amperometric Cholesterol Biosensor Based on DTP(aryl)aniline Conducting Polymer Bound Cholesterol Oxidase. ELECTROANAL 2018. [DOI: 10.1002/elan.201800248] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Emre Cevik
- Department of Genetic Research; Institute for Research and Medical Consultations (IRMC); Imam Abdulrahman Bin Faisal University, P.O. Box 1982; Dammam 31441 Saudi Arabia
| | - Alaaddin Cerit
- Konya Necmettin Erbakan University; Eregli Kemal Akman Vocational School; Konya Turkey
| | - Nilay Gazel
- Selcuk University; Department of Chemistry; Konya 42075 Turkey
| | - Huseyin Bekir Yildiz
- Department of Metallurgical and Materials Engineering; KTO Karatay University; 42020 Konya Turkey
- Biotechnology Research Lab, FELSIM Ltd Inc; Konya Technocity, Selcuklu; 42003 Konya Turkey
| |
Collapse
|
8
|
Yasujima R, Yasueda K, Horiba T, Komaba S. Multi-Enzyme Immobilized Anodes Utilizing Maltose Fuel for Biofuel Cell Applications. ChemElectroChem 2018. [DOI: 10.1002/celc.201800370] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Reiho Yasujima
- Department of Applied Chemistry; Tokyo University of Science; 1-3 Kagurazaka Shinjuku, Tokyo 162-8601 Japan
| | - Kengo Yasueda
- Department of Applied Chemistry; Tokyo University of Science; 1-3 Kagurazaka Shinjuku, Tokyo 162-8601 Japan
| | - Tatsuo Horiba
- Department of Applied Chemistry; Tokyo University of Science; 1-3 Kagurazaka Shinjuku, Tokyo 162-8601 Japan
| | - Shinichi Komaba
- Department of Applied Chemistry; Tokyo University of Science; 1-3 Kagurazaka Shinjuku, Tokyo 162-8601 Japan
| |
Collapse
|
9
|
Extracellular cholesterol oxidase production by Streptomyces aegyptia, in vitro anticancer activities against rhabdomyosarcoma, breast cancer cell-lines and in vivo apoptosis. Sci Rep 2018; 8:2706. [PMID: 29426900 PMCID: PMC5807524 DOI: 10.1038/s41598-018-20786-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 01/24/2018] [Indexed: 11/08/2022] Open
Abstract
In recent years, microbial cholesterol oxidases have gained great attention due to its widespread use in medical applications for serum cholesterol determination. Streptomyces aegyptia strain NEAE-102 exhibited high level of extracellular cholesterol oxidase production using a minimum medium containing cholesterol as the sole source of carbon. Fifteen variables were screened using Plackett–Burman design for the enhanced cholesterol oxidase production. The most significant variables affecting enzyme production were further optimized by using the face-centered central composite design. The statistical optimization resulted in an overall 4.97-fold increase (15.631 UmL−1) in cholesterol oxidase production in the optimized medium as compared with the unoptimized medium before applying Plackett Burman design (3.1 UmL−1). The purified cholesterol oxidase was evaluated for its in vitro anticancer activities against five human cancer cell lines. The selectivity index values on rhabdomyosarcoma and breast cancer cell lines were 3.26 and 2.56; respectively. The in vivo anticancer activity of cholesterol oxidase was evaluated against Ehrlich solid tumor model. Compared with control mice, tumors growth was significantly inhibited in the mice injected with cholesterol oxidase alone, doxorubicin alone and cholesterol oxidase/doxorubicin combination by 60.97%, 72.99% and 97.04%; respectively. These results demonstrated that cholesterol oxidase can be used as a promising natural anticancer drug.
Collapse
|
10
|
Qin HM, Wang JW, Guo Q, Li S, Xu P, Zhu Z, Sun D, Lu F. Refolding of a novel cholesterol oxidase from Pimelobacter simplex reveals dehydrogenation activity. Protein Expr Purif 2017; 139:1-7. [DOI: 10.1016/j.pep.2017.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 11/26/2022]
|
11
|
Tunable poly(o-anisidine)/carbon nanotubes nanocomposites as an electrochemical sensor for the detection of an anthelmintic drug mebendazole. Polym Bull (Berl) 2017. [DOI: 10.1007/s00289-017-2187-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Dervisevic M, Çevik E, Şenel M, Nergiz C, Abasiyanik MF. Amperometric cholesterol biosensor based on reconstituted cholesterol oxidase on boronic acid functional conducting polymers. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.06.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Lakshmi GBVS, Sharma A, Solanki PR, Avasthi DK. Mesoporous polyaniline nanofiber decorated graphene micro-flowers for enzyme-less cholesterol biosensors. NANOTECHNOLOGY 2016; 27:345101. [PMID: 27419910 DOI: 10.1088/0957-4484/27/34/345101] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In the present work, we have studied a nanocomposite of polyaniline nanofiber-graphene microflowers (PANInf-GMF), prepared by an in situ rapid mixing polymerization method. The structural and morphological studies of the nanocomposite (PANInf-GMF) were carried out by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared (FTIR) and Raman spectroscopy. The mesoporous, nanofibrous and microflower structures were observed by scanning electron microscopy. The functional groups and synergetic effects were observed by FTIR and micro-Raman measurements. The water wettability was carried out by a contact angle measurement technique and found to be super hydrophilic in nature towards water. This nanocomposite was deposited onto indium-tin-oxide coated glass substrate by a drop casting method and used for the detection of cholesterol using an electrochemical technique. The differential pulse voltammetry studies show the appreciable increase in the current with the addition of 1.93 to 464.04 mg dl(-1) cholesterol concentration. It is also found that the electrodes were highly selective towards cholesterol when compared to other biological interfering analytes, such as glucose, urea, citric acid, cysteine and ascorbic acid. The sensitivity of the sensor is estimated as 0.101 μA mg(-1) dl cm(-2) and the lower detection limit as 1.93 mg dl(-1). This work will throw light on the preparation of non-enzymatic biosensors based on PANInf-carbon nanostructure composites.
Collapse
Affiliation(s)
- G B V S Lakshmi
- Inter University Accelerator Centre (IUAC), New Delhi, India
| | | | | | | |
Collapse
|
14
|
Synthesis of one-dimensional gold nanostructures and the electrochemical application of the nanohybrid containing functionalized graphene oxide for cholesterol biosensing. Bioelectrochemistry 2016; 110:79-90. [DOI: 10.1016/j.bioelechem.2016.03.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 03/25/2016] [Accepted: 03/26/2016] [Indexed: 01/04/2023]
|
15
|
Xu L, Hou Y, Zhang M, Yang X, Jenkins G, Huang W, Yao C, Wu Q. A novel electrochemical biosensor for detection of cholesterol. RUSS J ELECTROCHEM+ 2016. [DOI: 10.1134/s1023193516030101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Protein engineering of microbial cholesterol oxidases: a molecular approach toward development of new enzymes with new properties. Appl Microbiol Biotechnol 2016; 100:4323-36. [DOI: 10.1007/s00253-016-7497-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/22/2016] [Accepted: 03/24/2016] [Indexed: 10/22/2022]
|
17
|
Bhandari S, Khastgir D. Corrosion-free electrochemical synthesis of polyaniline using Cu counter electrode in acidic medium. INT J POLYM MATER PO 2016. [DOI: 10.1080/00914037.2016.1149842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Subhendu Bhandari
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur, India
- Plastics and Polymer Engineering Department, Maharashtra Institute of Technology, Aurangabad, Maharashtra, India
| | - Dipak Khastgir
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
18
|
Yang Y, Yan Y, Chen X, Zhai W, Xu Y, Liu Y. Investigation of a Polyaniline-Coated Copper Hexacyanoferrate Modified Glassy Carbon Electrode as a Sulfite Sensor. Electrocatalysis (N Y) 2014. [DOI: 10.1007/s12678-014-0199-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Basniwal RK, Chauhan RPS, Parvez S, Jain VK. Development of a Cholesterol Biosensor by Chronoamperometric Deposition of Polyaniline-Ag Nanocomposites. INT J POLYM MATER PO 2013. [DOI: 10.1080/00914037.2012.734351] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Pesqueira CLM, del Castillo-Castro T, Castillo-Ortega MM, Encinas JC. Chemochromic properties of neutral polyaniline throughout cholesterol exposure. JOURNAL OF POLYMER RESEARCH 2013. [DOI: 10.1007/s10965-012-0071-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Chauhan R, Saini D, Basu T. Development of a Novel Reusable Real Time Monitoring Glucose Sensor Based on Nanostructured Conducting Polyaniline (NSPANI). ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ijoc.2013.31010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Potassium-doped carbon nanotubes toward the direct electrochemistry of cholesterol oxidase and its application in highly sensitive cholesterol biosensor. Electrochim Acta 2011. [DOI: 10.1016/j.electacta.2011.08.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Dhand C, Das M, Datta M, Malhotra B. Recent advances in polyaniline based biosensors. Biosens Bioelectron 2011; 26:2811-21. [DOI: 10.1016/j.bios.2010.10.017] [Citation(s) in RCA: 392] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 09/30/2010] [Accepted: 10/11/2010] [Indexed: 11/29/2022]
|
24
|
Khan R, Khare P, Baruah BP, Hazarika AK, Dey NC. Spectroscopic, Kinetic Studies of Polyaniline-Flyash Composite. ACTA ACUST UNITED AC 2011. [DOI: 10.4236/aces.2011.12007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Kuczynska A, Uygun A, Kaim A, Wilczura-Wachnik H, Yavuz AG, Aldissi M. Effects of surfactants on the characteristics and biosensing properties of polyaniline. POLYM INT 2010. [DOI: 10.1002/pi.2898] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
26
|
The increasing importance of carbon nanotubes and nanostructured conducting polymers in biosensors. Anal Bioanal Chem 2010; 398:1575-89. [DOI: 10.1007/s00216-010-4054-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 07/17/2010] [Accepted: 07/20/2010] [Indexed: 11/26/2022]
|
27
|
Li Y, Bai H, Liu Q, Bao J, Han M, Dai Z. A nonenzymatic cholesterol sensor constructed by using porous tubular silver nanoparticles. Biosens Bioelectron 2010; 25:2356-60. [DOI: 10.1016/j.bios.2010.03.036] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 03/23/2010] [Accepted: 03/28/2010] [Indexed: 10/19/2022]
|
28
|
Abdelwahab A, Won MS, Shim YB. Direct Electrochemistry of Cholesterol Oxidase Immobilized on a Conducting Polymer: Application for a Cholesterol Biosensor. ELECTROANAL 2009. [DOI: 10.1002/elan.200900363] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|