1
|
Jadda R, Madhumanchi S, Suedee R. Novel adsorptive materials by adenosine 5'-triphosphate imprinted-polymer over the surface of polystyrene nanospheres for selective separation of adenosine 5'-triphosphate biomarker from urine. J Sep Sci 2019; 42:3662-3678. [PMID: 31591808 DOI: 10.1002/jssc.201900583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 01/07/2023]
Abstract
In this study, we have developed a method to assess adenosine 5'-triphosphate by adsorptive extraction using surface adenosine 5'-triphosphate-imprinted polymer over polystyrene nanoparticles (412 ± 16 nm) for selective recognition/separation from urine. Molecularly imprinted polymer was synthesized by emulsion copolymerization reaction using adenosine 5'-triphosphate as a template, functional monomers (methacrylic acid, N-isopropyl acrylamide, and dimethylamino ethylmethacrylate) and a crosslinker, methylenebisacrylamide. The binding capacities of imprinted and non-imprinted polymers were measured using high-performance liquid chromatography with UV detection with a detection limit of 1.6 ± 0.02 µM of adenosine 5'-triphosphate in the urine. High binding affinity (QMIP , 42.65 µmol/g), and high selectivity and specificity to adenosine 5'-triphosphate compared to other competitive nucleotides including adenosine 5'-diphosphate, adenosine 5'-monophosphate, and analogs such as adenosine, adenine, uridine, uric acid, and creatinine were observed. The imprinting efficiency of imprinted polymer is 2.11 for urine (QMIP , 100.3 µmol/g) and 2.51 for synthetic urine (QMIP , 48.5 µmol/g). The extraction protocol was successfully applied to the direct extraction of adenosine 5'-triphosphate from spiked human urine indicating that this synthesized molecularly imprinted polymer allowed adenosine 5'-triphosphate to be preconcentrated while simultaneously interfering compounds were removed from the matrix. These submicron imprinted polymers over nano polystyrene spheres have a potential in the pharmaceutical industries and clinical analysis applications.
Collapse
Affiliation(s)
- Ramana Jadda
- Molecular Recognition Materials Research Unit, Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Thailand
| | - Sreenu Madhumanchi
- Molecular Recognition Materials Research Unit, Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Thailand
| | - Roongnapa Suedee
- Molecular Recognition Materials Research Unit, Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Thailand
| |
Collapse
|
2
|
Domínguez-Álvarez J, Mateos-Vivas M, Rodríguez-Gonzalo E, García-Gómez D, Bustamante-Rangel M, Delgado Zamarreño MM, Carabias-Martínez R. Determination of nucleosides and nucleotides in food samples by using liquid chromatography and capillary electrophoresis. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
3
|
Whitcombe MJ, Kirsch N, Nicholls IA. Molecular imprinting science and technology: a survey of the literature for the years 2004-2011. J Mol Recognit 2014; 27:297-401. [PMID: 24700625 DOI: 10.1002/jmr.2347] [Citation(s) in RCA: 275] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/28/2013] [Accepted: 12/01/2013] [Indexed: 12/11/2022]
Abstract
Herein, we present a survey of the literature covering the development of molecular imprinting science and technology over the years 2004-2011. In total, 3779 references to the original papers, reviews, edited volumes and monographs from this period are included, along with recently identified uncited materials from prior to 2004, which were omitted in the first instalment of this series covering the years 1930-2003. In the presentation of the assembled references, a section presenting reviews and monographs covering the area is followed by sections describing fundamental aspects of molecular imprinting including the development of novel polymer formats. Thereafter, literature describing efforts to apply these polymeric materials to a range of application areas is presented. Current trends and areas of rapid development are discussed.
Collapse
|
4
|
Preparation of a surface molecularly imprinted fiber for bisphenol a recognition. JOURNAL OF POLYMER RESEARCH 2014. [DOI: 10.1007/s10965-014-0468-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
5
|
Scorrano S, Mergola L, Del Sole R, Lazzoi MR, Vasapollo G. A molecularly imprinted polymer as artificial receptor for the detection of indole-3-carbinol. J Appl Polym Sci 2014. [DOI: 10.1002/app.40819] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sonia Scorrano
- Department of Engineering for Innovation; University of Salento; 73100 Lecce Italy
| | - Lucia Mergola
- Department of Engineering for Innovation; University of Salento; 73100 Lecce Italy
| | - Roberta Del Sole
- Department of Engineering for Innovation; University of Salento; 73100 Lecce Italy
| | - Maria Rosaria Lazzoi
- Department of Engineering for Innovation; University of Salento; 73100 Lecce Italy
| | - Giuseppe Vasapollo
- Department of Engineering for Innovation; University of Salento; 73100 Lecce Italy
| |
Collapse
|
6
|
de Coelho Escobar C, dos Santos JHZ. Effect of the sol-gel route on the textural characteristics of silica imprinted with Rhodamine B. J Sep Sci 2014; 37:868-75. [PMID: 24478149 DOI: 10.1002/jssc.201301143] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 01/16/2014] [Accepted: 01/18/2014] [Indexed: 02/06/2023]
Abstract
A series of silica xerogels that support Rhodamine B as a template were synthesized using distinct sol-gel routes, namely, acid-catalyzed routes, a base-catalyzed route, acid-catalyzed with base-catalyzed (two steps) hydrolytic routes, and a FeCl3 -catalyzed nonhydrolytic route. The extraction methods (thermal, Soxhlet, water washing, and ultrasound) were also evaluated. The resulting xerogels were characterized through porosimetry using nitrogen adsorption/desorption. The samples were further analyzed through small-angle X-ray scattering, Fourier transform infrared spectroscopy, and SEM. The preparation route affected the materials' textural properties. Extraction was optimized using acid and two-step routes. The acid route from Rhodamine B to Rhodamine 6G generated the highest selectivity factor (2.5). The nonhydrolytic route produced the best imprinting factor. Competitive adsorption was also used, from which the approximate imprinting factor was 2. The cavity shape generated during the production of the imprinted silica dictates the adsorption behavior, not the magnitude of the surface area.
Collapse
Affiliation(s)
- Cícero de Coelho Escobar
- Departamento de Engenharia Química-Universidade Federal do Rio Grande do Sul Rua Eng. Luis Englert s/n, Porto Alegre -RS, Brazil
| | | |
Collapse
|
7
|
Surface molecularly imprinted polymer prepared by reverse atom transfer radical polymerization for selective adsorption indole. J Appl Polym Sci 2014. [DOI: 10.1002/app.40473] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Cheong WJ, Yang SH, Ali F. Molecular imprinted polymers for separation science: a review of reviews. J Sep Sci 2012; 36:609-28. [PMID: 23281278 DOI: 10.1002/jssc.201200784] [Citation(s) in RCA: 324] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 10/06/2012] [Accepted: 10/06/2012] [Indexed: 11/06/2022]
Abstract
Molecular imprinted polymer is an artificial receptor made by imprinting molecules of a template in a polymer matrix followed by removing the template molecules via thorough washing to give the permanent template grooves. They show favored affinity to the template molecule compared to other molecules, and this property is the basic driving force for such diverse application of this techniques. Such techniques have been increasingly employed in a wide scope of applications such as chromatography, sample pretreatment, purification, catalysts, sensors, and drug delivery, etc., mostly in bioanalytical areas. A major part of them is related to development of new stationary phases and their application in chromatography and sample pretreatment. Embodiments of molecular imprinted polymer materials have been carried out in a variety of forms such as irregularly ground particles, regular spherical particles, nanoparticles, monoliths in a stainless steel or capillary column, open tubular layers in capillaries, surface attached thin layers, membranes, and composites, etc. There have been numerous review articles on molecular imprinted polymer issues. In this special review, the reviews in recent ca. 10 years will be categorized into several subgroups according to specified topics in separation science, and each review in each subgroup will be introduced in the order of date with brief summaries and comments on new developments and different scopes of prospects. Brief summaries of each categories and conclusive future perspectives are also given.
Collapse
Affiliation(s)
- Won Jo Cheong
- Department of Chemistry, Inha University, Namku, Incheon, South Korea.
| | | | | |
Collapse
|
9
|
Nicolescu TV, Meouche W, Branger C, Margaillan A, Sarbu A, Donescu D. Tailor-made polymer beads for gallic acid recognition and separation. JOURNAL OF POLYMER RESEARCH 2012. [DOI: 10.1007/s10965-012-0002-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Lee SH, Doong RA. Adsorption and selective recognition of 17ß-estradiol by molecularly imprinted polymers. JOURNAL OF POLYMER RESEARCH 2012. [DOI: 10.1007/s10965-012-9939-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Vasapollo G, Sole RD, Mergola L, Lazzoi MR, Scardino A, Scorrano S, Mele G. Molecularly imprinted polymers: present and future prospective. Int J Mol Sci 2011; 12:5908-45. [PMID: 22016636 PMCID: PMC3189760 DOI: 10.3390/ijms12095908] [Citation(s) in RCA: 568] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 08/03/2011] [Accepted: 08/17/2011] [Indexed: 11/16/2022] Open
Abstract
Molecular Imprinting Technology (MIT) is a technique to design artificial receptors with a predetermined selectivity and specificity for a given analyte, which can be used as ideal materials in various application fields. Molecularly Imprinted Polymers (MIPs), the polymeric matrices obtained using the imprinting technology, are robust molecular recognition elements able to mimic natural recognition entities, such as antibodies and biological receptors, useful to separate and analyze complicated samples such as biological fluids and environmental samples. The scope of this review is to provide a general overview on MIPs field discussing first general aspects in MIP preparation and then dealing with various application aspects. This review aims to outline the molecularly imprinted process and present a summary of principal application fields of molecularly imprinted polymers, focusing on chemical sensing, separation science, drug delivery and catalysis. Some significant aspects about preparation and application of the molecular imprinting polymers with examples taken from the recent literature will be discussed. Theoretical and experimental parameters for MIPs design in terms of the interaction between template and polymer functionalities will be considered and synthesis methods for the improvement of MIP recognition properties will also be presented.
Collapse
Affiliation(s)
- Giuseppe Vasapollo
- Department of Engineering of Innovation, University of Salento, via per Arnesano km 1, Lecce 73100, Italy; E-Mails: (R.D.S.); (L.M.); (M.R.L.); (A.S.); (S.S.); (G.M.)
| | - Roberta Del Sole
- Department of Engineering of Innovation, University of Salento, via per Arnesano km 1, Lecce 73100, Italy; E-Mails: (R.D.S.); (L.M.); (M.R.L.); (A.S.); (S.S.); (G.M.)
| | - Lucia Mergola
- Department of Engineering of Innovation, University of Salento, via per Arnesano km 1, Lecce 73100, Italy; E-Mails: (R.D.S.); (L.M.); (M.R.L.); (A.S.); (S.S.); (G.M.)
| | - Maria Rosaria Lazzoi
- Department of Engineering of Innovation, University of Salento, via per Arnesano km 1, Lecce 73100, Italy; E-Mails: (R.D.S.); (L.M.); (M.R.L.); (A.S.); (S.S.); (G.M.)
| | - Anna Scardino
- Department of Engineering of Innovation, University of Salento, via per Arnesano km 1, Lecce 73100, Italy; E-Mails: (R.D.S.); (L.M.); (M.R.L.); (A.S.); (S.S.); (G.M.)
| | - Sonia Scorrano
- Department of Engineering of Innovation, University of Salento, via per Arnesano km 1, Lecce 73100, Italy; E-Mails: (R.D.S.); (L.M.); (M.R.L.); (A.S.); (S.S.); (G.M.)
| | - Giuseppe Mele
- Department of Engineering of Innovation, University of Salento, via per Arnesano km 1, Lecce 73100, Italy; E-Mails: (R.D.S.); (L.M.); (M.R.L.); (A.S.); (S.S.); (G.M.)
| |
Collapse
|