1
|
Kil J, Rahman RT, Wang W, Choi S, Nam YS, Li S. Dual functionalized brush copolymers as versatile antifouling coatings. J Mater Chem B 2023; 11:2904-2915. [PMID: 36892061 DOI: 10.1039/d2tb02522a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Polymer coatings containing both fouling-resistant and fouling-release components have been reported to show synergistic antifouling properties. However, it remains unclear how the polymer composition influences the antifouling performance, particularly regarding foulants of different sizes and biological natures. Herein, we prepare dual functionalized brush copolymers containing fouling-resistant poly(ethylene glycol) (PEG) and fouling-release polydimethylsiloxane (PDMS) and examine their antifouling performances against different biofoulants. We utilize poly(pentafluorophenyl acrylate) (PPFPA) as a reactive precursor polymer and graft amine-functionalized PEG and PDMS side chains to create PPFPA-g-PEG-g-PDMS brush copolymers of systematically varying compositions. The copolymer films spin-coated on silicon wafers exhibit surface heterogeneity that can be correlated well with the bulk composition of the copolymer. When the copolymer-coated surfaces are examined against protein (human serum albumin and bovine serum albumin) adsorption and cell (lung cancer cells and microalgae) adhesion, they are found to perform better than the homopolymers. The enhanced antifouling properties are attributed to the copolymers having a PEG-rich top layer and a PEG/PDMS mixed bottom layer that work synergistically to resist biofoulant attachment. Furthermore, the composition of the best-performing copolymer is different for different foulants, with PPFPA-g-PEG39-g-PDMS46 exhibiting the best antifouling properties against proteins and PPFPA-g-PEG54-g-PDMS30 exhibiting the best antifouling properties against cells. We explain this difference by considering the changes in the length scale of the surface heterogeneity in relation to the foulant sizes.
Collapse
Affiliation(s)
- Jihyo Kil
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Rafia Tasnim Rahman
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Wenxuan Wang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Saehan Choi
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Yoon Sung Nam
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Sheng Li
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
2
|
Yu Y, Brió Pérez M, Cao C, de Beer S. Switching (bio-) adhesion and friction in liquid by stimulus responsive polymer coatings. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110298] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
3
|
Gobeze HB, Ma J, Leonik FM, Kuroda DG. Bottom-Up Approach to Assess the Molecular Structure of Aqueous Poly( N-Isopropylacrylamide) at Room Temperature via Infrared Spectroscopy. J Phys Chem B 2020; 124:11699-11710. [PMID: 33306373 PMCID: PMC7872429 DOI: 10.1021/acs.jpcb.0c08424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The structure of poly(N-isopropylacrylamide) (PNIPAM) in solution is still an unresolved topic. Here, the PNIPAM structure in water was investigated using a bottom-up approach, involving the monomer, dimer, and trimer, and a combination of infrared (IR) spectroscopies as well as molecular dynamics simulations. The experiments show that the monomer and oligomers exhibit a broad and asymmetric amide I band with two underlying transitions, while PNIPAM presents the same major transitions and a minor one. Analysis of the 2D IR spectra and theoretical modeling of the amide I band indicates that the two transitions of the monomer do not have the same molecular origin as the oligomers and the polymer. In the monomer, the two bands originate from the ultrafast rotation of its ethyl group, which leads to different solvation structures for the various rotational conformers. In the case of the oligomers, the asymmetry and splitting of the amide I band is caused by the vibrational coupling among adjacent amide side chains. Moreover, it is deduced from the simulations that the oligomers have three distinct backbone conformations for neighboring amides. In particular, two of the backbone conformations have a closed and compact structure, while in the third, the backbone is open and elongated. The bottom-up approach allowed us to infer that such backbone conformations exist in PNIPAM as well. Consequently, the two major amide I transitions of the polymer are also assigned to split amide I transitions resulting from the vibrationally coupled nearest-neighboring amides. In contrast, the additional minor transition observed in PNIPAM is assigned to unsolvated amide units of the polymer. The proposed molecular model successfully describes that PNIPAM amide I band changes with temperature in terms of its molecular structure. This new model strongly suggests that PNIPAM does not have a completely random backbone structure, but has distinct backbone conformers between neighboring amides.
Collapse
Affiliation(s)
- Habtom B Gobeze
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Jianbo Ma
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Fedra M Leonik
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Daniel G Kuroda
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
4
|
An K, Kang H, Zhang L, Guan L, Tian D. Preparation and properties of thermosensitive molecularly imprinted polymer based on konjac glucomannan and its controlled recognition and delivery of 5-fluorouracil. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101977] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Khodaei A, Bagheri R, Madaah Hosseini HR, Bagherzadeh E. RSM based engineering of the critical gelation temperature in magneto-thermally responsive nanocarriers. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.08.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Effect of TiO2 loading on the morphology and CO2/CH4 separation performance of PEBAX-based membranes. Front Chem Sci Eng 2019. [DOI: 10.1007/s11705-018-1781-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
7
|
Xue N, Qiu XP, Aseyev V, Winnik FM. Nonequilibrium Liquid–Liquid Phase Separation of Poly(N-isopropylacrylamide) in Water/Methanol Mixtures. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00407] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Na Xue
- Department
of Chemistry, University of Montreal, CP6128 Succursale Centre Ville, Montreal, QC, Canada H3C 3J7
| | - Xing-Ping Qiu
- Department
of Chemistry, University of Montreal, CP6128 Succursale Centre Ville, Montreal, QC, Canada H3C 3J7
| | - Vladimir Aseyev
- Department
of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland
| | - Françoise M. Winnik
- Department
of Chemistry, University of Montreal, CP6128 Succursale Centre Ville, Montreal, QC, Canada H3C 3J7
- World
Premier International (WPI) Research Center Initiative, International Center for Materials Nanoarchitectonics (MANA) and National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
- Department
of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
8
|
Yu Y, Lopez de la Cruz RA, Kieviet BD, Gojzewski H, Pons A, Julius Vancso G, de Beer S. Pick up, move and release of nanoparticles utilizing co-non-solvency of PNIPAM brushes. NANOSCALE 2017; 9:1670-1675. [PMID: 28084477 DOI: 10.1039/c6nr09245d] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A critical complication in handling nanoparticles is the formation of large aggregates when particles are dried e.g. when they need to be transferred from one liquid to another. The particles in these aggregates need to disperse into the destined liquid medium, which has been proven difficult due to the relatively large interfacial interaction forces between nanoparticles. We present a simple method to capture, move and release nanoparticles without the formation of large aggregates. To do so, we employ the co-non-solvency effect of poly(N-isopropylacrylamide) (PNIPAM) brushes in water-ethanol mixtures. In pure water or ethanol, the densely end-anchored macromolecules in the PNIPAM brush stretch and absorb the solvent. We show that under these conditions, the adherence between the PNIPAM brush and a silicon oxide, gold, polystyrene or poly(methyl methacrylate) colloid attached to an atomic force microscopy cantilever is low. In contrast, when the PNIPAM brushes are in a collapsed state in a 30-70 vol% ethanol-water mixture, the adhesion between the brush and the different counter surfaces is high. For potential application, we demonstrate that this difference in adhesion can be utilized to pick up, move and release 900 silicon oxide nanoparticles of diameter 80 nm using only 10 × 10 μm2 PNIPAM brush.
Collapse
Affiliation(s)
- Yunlong Yu
- Materials Science and Technology of Polymers, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands.
| | - Ricardo A Lopez de la Cruz
- Physics of Fluids, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands
| | - Bernard D Kieviet
- Materials Science and Technology of Polymers, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands.
| | - Hubert Gojzewski
- Materials Science and Technology of Polymers, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands.
| | - Adeline Pons
- Physics of Fluids, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands
| | - G Julius Vancso
- Materials Science and Technology of Polymers, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands.
| | - Sissi de Beer
- Materials Science and Technology of Polymers, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands.
| |
Collapse
|
9
|
Shieh YT, Zhou TY, Kuo SW. Carbon dioxide affects the phase transition of poly(N-isopropylacrylamide). RSC Adv 2016. [DOI: 10.1039/c6ra16113h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The effects of atmospheres of CO2 and N2 on the LCST of PNIPAAm in aqueous solution using high-pressure differential scanning calorimetry (HP-DSC).
Collapse
Affiliation(s)
- Yeong-Tarng Shieh
- Department of Chemical and Materials Engineering
- National University of Kaohsiung
- Kaohsiung 811
- Taiwan
| | - Ting-Yu Zhou
- Department of Chemical and Materials Engineering
- National University of Kaohsiung
- Kaohsiung 811
- Taiwan
| | - Shiao-Wei Kuo
- Department of Materials and Optoelectronic Science
- National Sun Yat-Sen University
- Kaohsiung 80424
- Taiwan
| |
Collapse
|
10
|
Murshid N, Wang X. Iron-Carbonyl Aqueous Vesicles (MCsomes) by Hydration of [Fe(CO){CO(CH2)5CH3}(Cp)(PPh3)] (FpC6): Highly Integrated Colloids with Aggregation-Induced Self-Enhanced IR Absorption (AI-SEIRA). Chemistry 2015; 21:19223-30. [PMID: 26563745 DOI: 10.1002/chem.201502121] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Indexed: 11/11/2022]
Abstract
Self-assembly of hydrophobic molecules into aqueous colloids contradicts common chemical intuition, but has been achieved through hydration of [Fe(CO){CO(CH2)5CH3}(Cp)(PPh3)] (FpC6). FpC6 has no surface activity, no NMR signals in D2O and no critical aggregation concentration (CAC) in H2O. The molecule, however, contains both acyl and terminal CO groups that are prone to being hydrated. By adding water to a solution in THF, self-assembly of FpC6 can be initiated through water-carbonyl interactions (WCIs) with the highly polarized acyl CO groups. This aggregation subsequently enhances the hydration of the acyl CO groups and also induces the WCI of otherwise unhydrated terminal CO groups. The resultant metal-carbonyl aggregates have been proved to be bilayer vesicles with iron complexes exposed towards water and alkyl chains forming inner walls (MCsomes). These MCsomes show high structure integration upon dilution due to the hydrophobic nature of the building blocks. The highly polarized CO groups on the surface of the MCsomes result in a negative zeta potential (-65 mV) and create a local electric field, which significantly enhances the IR absorption of CO groups by more than 100-fold. This is the first discovery of aggregation-induced self-enhanced IR absorption (AI-SRIRA) without the assistant of external dielectric substrates. Highly integrated MCsomes are, therefore, promising as a novel group of materials, for example, for IR-based sensing and imaging.
Collapse
Affiliation(s)
- Nimer Murshid
- Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue west, Waterloo, Ontario, N2L 3G1 (Canada)
| | - Xiaosong Wang
- Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue west, Waterloo, Ontario, N2L 3G1 (Canada).
| |
Collapse
|
11
|
Cao K, Murshid N, Li L, Lopez A, Tam KC, Wang X. Hydration of Hydrophobic Iron–Carbonyl Homopolymers via Water–Carbonyl Interaction (WCI): Creation of Uniform Organometallic Aqueous Vesicles with Exceptionally High Encapsulation Capacity. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b01531] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Kai Cao
- Department
of Chemistry, ‡Department of Chemical Engineering,
and §Waterloo Institute
for Nanotechnology (WIN), University of Waterloo, 200 University
Ave West, Waterloo, Canada N2L 3G1
| | - Nimer Murshid
- Department
of Chemistry, ‡Department of Chemical Engineering,
and §Waterloo Institute
for Nanotechnology (WIN), University of Waterloo, 200 University
Ave West, Waterloo, Canada N2L 3G1
| | - Lu Li
- Department
of Chemistry, ‡Department of Chemical Engineering,
and §Waterloo Institute
for Nanotechnology (WIN), University of Waterloo, 200 University
Ave West, Waterloo, Canada N2L 3G1
| | - Anand Lopez
- Department
of Chemistry, ‡Department of Chemical Engineering,
and §Waterloo Institute
for Nanotechnology (WIN), University of Waterloo, 200 University
Ave West, Waterloo, Canada N2L 3G1
| | - Kam C. Tam
- Department
of Chemistry, ‡Department of Chemical Engineering,
and §Waterloo Institute
for Nanotechnology (WIN), University of Waterloo, 200 University
Ave West, Waterloo, Canada N2L 3G1
| | - Xiaosong Wang
- Department
of Chemistry, ‡Department of Chemical Engineering,
and §Waterloo Institute
for Nanotechnology (WIN), University of Waterloo, 200 University
Ave West, Waterloo, Canada N2L 3G1
| |
Collapse
|