1
|
Yacoub MH, Tseng YT, Kluin J, Vis A, Stock U, Smail H, Sarathchandra P, Aikawa E, El-Nashar H, Chester AH, Shehata N, Nagy M, El-Sawy A, Li W, Burriesci G, Salmonsmith J, Romeih S, Latif N. Valvulogenesis of a living, innervated pulmonary root induced by an acellular scaffold. Commun Biol 2023; 6:1017. [PMID: 37805576 PMCID: PMC10560219 DOI: 10.1038/s42003-023-05383-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 09/21/2023] [Indexed: 10/09/2023] Open
Abstract
Heart valve disease is a major cause of mortality and morbidity worldwide with no effective medical therapy and no ideal valve substitute emulating the extremely sophisticated functions of a living heart valve. These functions influence survival and quality of life. This has stimulated extensive attempts at tissue engineering "living" heart valves. These attempts utilised combinations of allogeneic/ autologous cells and biological scaffolds with practical, regulatory, and ethical issues. In situ regeneration depends on scaffolds that attract, house and instruct cells and promote connective tissue formation. We describe a surgical, tissue-engineered, anatomically precise, novel off-the-shelf, acellular, synthetic scaffold inducing a rapid process of morphogenesis involving relevant cell types, extracellular matrix, regulatory elements including nerves and humoral components. This process relies on specific material characteristics, design and "morphodynamism".
Collapse
Affiliation(s)
- Magdi H Yacoub
- Magdi Yacoub Institute, Harefield, UK.
- National Heart and Lung Institute, Imperial College London, London, UK.
- Aswan Heart Science Center, Magdi Yacoub Foundation, Aswan, Egypt.
| | - Yuan-Tsan Tseng
- Magdi Yacoub Institute, Harefield, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Jolanda Kluin
- Department of Cardiothoracic Surgery, Erasmus MC, Rotterdam, The Netherlands
| | - Annemijn Vis
- Amsterdam UMC, University of Amsterdam, Department of Cardiothoracic Surgery, Amsterdam, The Netherlands
| | - Ulrich Stock
- National Heart and Lung Institute, Imperial College London, London, UK
- Royal Brompton and Harefield Hospital, London, UK
| | | | - Padmini Sarathchandra
- Magdi Yacoub Institute, Harefield, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Elena Aikawa
- Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Hussam El-Nashar
- Aswan Heart Science Center, Magdi Yacoub Foundation, Aswan, Egypt
- Department of Bioengineering, Imperial College London, London, UK
| | - Adrian H Chester
- Magdi Yacoub Institute, Harefield, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Nairouz Shehata
- Aswan Heart Science Center, Magdi Yacoub Foundation, Aswan, Egypt
- Department of Computing, Imperial College London, London, UK
| | - Mohamed Nagy
- Aswan Heart Science Center, Magdi Yacoub Foundation, Aswan, Egypt
| | - Amr El-Sawy
- Aswan Heart Science Center, Magdi Yacoub Foundation, Aswan, Egypt
| | - Wei Li
- Royal Brompton and Harefield Hospital, London, UK
| | - Gaetano Burriesci
- Cardiovascular Engineering Laboratory, UCL Mechanical Engineering, University College London, London, UK
- Bioengineering Unit, Ri.MED Foundation, Palermo, Italy
| | - Jacob Salmonsmith
- Cardiovascular Engineering Laboratory, UCL Mechanical Engineering, University College London, London, UK
| | - Soha Romeih
- Aswan Heart Science Center, Magdi Yacoub Foundation, Aswan, Egypt
| | - Najma Latif
- Magdi Yacoub Institute, Harefield, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
2
|
Knol WC, Pirok BWJ, Peters RAH. Detection challenges in quantitative polymer analysis by liquid chromatography. J Sep Sci 2020; 44:63-87. [PMID: 32935906 PMCID: PMC7821191 DOI: 10.1002/jssc.202000768] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022]
Abstract
Accurate quantification of polymer distributions is one of the main challenges in polymer analysis by liquid chromatography. The response of contemporary detectors is typically influenced by compositional features such as molecular weight, chain composition, end groups, and branching. This renders the accurate quantification of complex polymers of which there are no standards available, extremely challenging. Moreover, any (programmed) change in mobile-phase composition may further limit the applicability of detection techniques. Current methods often rely on refractive index detection, which is not accurate when dealing with complex samples as the refractive-index increment is often unknown. We review current and emerging detection methods in liquid chromatography with the aim of identifying detectors, which can be applied to the quantitative analysis of complex polymers.
Collapse
Affiliation(s)
- Wouter C Knol
- Analytical Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands.,Centre for Analytical Sciences Amsterdam, Amsterdam, The Netherlands
| | - Bob W J Pirok
- Analytical Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands.,Centre for Analytical Sciences Amsterdam, Amsterdam, The Netherlands
| | - Ron A H Peters
- Analytical Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands.,Centre for Analytical Sciences Amsterdam, Amsterdam, The Netherlands.,DSM Resins & Functional Materials, Analytical Technology Centre, Waalwijk, The Netherlands
| |
Collapse
|
3
|
Valadez-Pérez NE, Barrera-Rivera KA, Martínez-Richa A, Gil-Villegas A. Monte Carlo simulation of an associating fluid model to describe polymerization in polycaprolactone diols: The role of attractive sites of variable range. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Lei Y, Yu L, Shen M, Luo S, Gao Z. Condensation of 9-fluorenone and phenol using an ionic liquid and a mercapto compound synergistic catalyst. NEW J CHEM 2019. [DOI: 10.1039/c9nj02581b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A SO3H-functionalized ionic liquid and thiol co-catalyst synergistically catalyze the condensation reaction of 9-fluorenone with phenol.
Collapse
Affiliation(s)
- Yan Lei
- School of Chemical Engineering
- Dalian University of Technology
- Dalian
- China
| | - Limei Yu
- State Key Lab of Fine Chemicals
- Dalian University of Technology
- Dalian
- China
- School of Chemical Engineering
| | - Maochang Shen
- School of Chemical Engineering
- Dalian University of Technology
- Dalian
- China
| | - Shikang Luo
- School of Chemical Engineering
- Dalian University of Technology
- Dalian
- China
| | - Zhanxian Gao
- School of Chemical Engineering
- Dalian University of Technology
- Dalian
- China
| |
Collapse
|
6
|
Zhan M, Li S, Zhong Y, Shen C, Gao S. Preparation and characterization of a foam regulator with ultra-high molecular weight. J Appl Polym Sci 2017. [DOI: 10.1002/app.44479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mengyu Zhan
- Department of Polymer Materials and Engineering; School of Material Sciences & Engineering, Wuhan University of Technology; Wuhan 430070 China
| | - Siyu Li
- Department of Polymer Materials and Engineering; School of Material Sciences & Engineering, Wuhan University of Technology; Wuhan 430070 China
| | - Yi Zhong
- Department of Polymer Materials and Engineering; School of Material Sciences & Engineering, Wuhan University of Technology; Wuhan 430070 China
| | - Chunhui Shen
- Department of Polymer Materials and Engineering; School of Material Sciences & Engineering, Wuhan University of Technology; Wuhan 430070 China
| | - Shanjun Gao
- Department of Polymer Materials and Engineering; School of Material Sciences & Engineering, Wuhan University of Technology; Wuhan 430070 China
| |
Collapse
|